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ABSTRACT

A new approach to the design of adaptive control systems has been
developed. It is called the "adaptive control function approach,"
and the systems so designed are called "adaptive control function
systems." This terminology is descriptive of the basic operating
principle for these systems.

The basic operating principle is that sums of properly modulated,
conventional linear feedback and feedforward signals provide the control
inputs needed to obtain specified responses in a number of output
variables of a linear controlled element. The theoretical development
in this report deals with linear, constant coefficient controlled
elements only. With this restriction, the number of linearly independent
controlled element responses which can be arbitrarily specified is
equal to the number of independent control points. These specified
responses then determine what the (ideal) control inputs should be.

Adaptive control function systems are mechanized so that the
actual input at each control point approaches the ideal input because
of a steepest descent feedback mechanism. The difference between the
ideal and actual control inputs can be made arbitrarily close to zero,
in principle, by increasing the rate of descent in the steepest descent
procedure. Increasing this rate is accomplished by increasing adaptive
loop gains. This increases the rate at which the gains modulating the
feedback and feedforward signals can be changed. Selection of the
adaptive loop gains is at the choice of the designer. In principle,
adaptive gains may be set arbitrarily high, but when practical devices
are used to realize the system, there is actually a finite upper limit.

The adaptive control function approach is applied here to the design
of an adaptive, lateral stability augmentation system for a hypothetical,
manned, lifting-body, entry vehicle. The objective of the application
is to effect considerable improvement in the fickle and sometimes rapidly
changing latersl-directional handling qualities of this vehicle. Data
from a simulation of the system demonstrate its effectiveness in meeting
the objective. Practical modifications, necessary for reducing adaptive
control function theory to practice, are given careful attention in the
example application.
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SYMBOLS

The standard symbology used in describing aircraft dynamics is given in
Ref. 11. All other symbols not explicitly defined where they are used in

the text are defined below.

8 lead compensated lateral accelerometer output

acc commanded value of an

8y lateral acceleration of the vehicle c.g.

a& lateral acceleration of the vehicle measured at a

point 3.88 feet forward of the c.g.

ay lateral acceleration of the vehicle measured at a
point 3.38 feet forward of the c.g.

ay. lateral acceleration of the vehicle measured at the
P pilots head, estimated to be 5.88 feet forward of
the c.g.
A¢ gain for adaptive adjustment of roll rate SAS gain, K¢
Ay gain for adaptive adjustment of lateral acceleration
SAS gain, Ky
d disturbance input to the vehicle
eg, error signal for the adaptive roll rate gain loop
erp error signal for the adaptive lateral acceleration gain loop
fa roll rate component of the criterion for the digital

adjustment scheme

e lateral acceleration component of the criterion for the
digital adjustment scheme

f¢ forcing function in the roll rate gain differential
equation

fy forcing function in the lateral acceleration gain
differential equation

G@ roll feedback transfer function

Ga§ lateral acceleration feedback transfer function

J criterion function

ix



K% gain of the roll rate SAS loop

Ky, Ka§ gain of the lateral acceleration SAS loop

K@ gain of the pilot describing function

lxo location of the rudder center of percussion

m subscript designating model variable

Ngf numerator of the transfer function between &; and qp

Ng?gg coupling numerator for &y, 8o, az and qj

q unspecified motion quantity

r yaw rate

5 Laplace operator

T time constant of the filter, F(s)

Yas aileron servo transfer function

Yrs rudder servo transfer function

Ya§ lateral acceleration feedback compensation

Y¢ roll rate feedback compensation

Yp pilot describing function

Yor crossfeed transfer function

Bg sideslip gust disturbance

Bg aileron deflection

5 rudder deflection

A characteristic polynomial

) roll angle

|@/B| magnitude of the ratio of roll to sideslip evaluated
at the dutch roll frequency, ay

Ta effective time delay in the pilot describing function

Wyp natural frequency of the dutch roll zeros for aileron inputs

g natural frequency of the dutch roll poles

X




NEW METHODS
IN ADAPTIVE FLIGHT CONTROL

By Lee Gregor Hofmann and John J. Best
Systems Technology, Inc.

SECTION I
INTRODUCTION

Self-adaptive control systems have been fashionable subjects for
controls research, now, for somewhat longer than a decade. As engineers
and scientists, we have tackled this subject using techniques ranging
from experimental synthesis in the laboratory to elegant mathematical
analysis. More often than not, these research efforts have been quite
successful in terms of producing practical solutions for particular
problems. In terms of producing generally applicable techniques
capable of serving the needs of system designers, however, success has

been considerably less.

The self-adaptive control system developed in this report provides
a system design technique, which in our opinion, considerably lessens
(but does not eliminate) the limitations mentioned above. Like
almost all "new" techniques, this is the product of continued reflection
upon the literature of this field, and a closely related field, system
identification. The main links of this research with past efforts
are conceptual in nature. For example, the basic idea of employing
a model of the desired system and/or response is very often attributed
to Lang and Ham (Ref. 1). The model was used as an (explicit) part of
the conditional feedback system in Ref. 1. Later the model or
model~reference concept was utilized by Whitaker, Yamron and Kezer
(Ref. 2) in the first version of the model-reference adaptive control
system. New theoretical developments gave rise to a second version of
the model-reference adaptive control system (Ref. 3). It is worthwhile
to note that just about the only feature of the first version to appear
in the second was the model. Models also were employed in an implicit
sense for system identification. Here the work of Graupe (Ref. 4), and

of Potts, Ornstein and Clymer (Ref. 5) should be mentioned because



the equation error technique used by these investigators results in

an implicit manifestation of a model.

Models are involved in the present work in an implicit way.
Their involvement is in the spirit of the model-reference technigue

although their precise role is distinctly different.

Many adaptive control systems and system identification schemes
depend upon minimization of a non-negative criterion function of some
convenient error. This is also true in the present work. This
approach, however, is often limited by slow convergence and/or
stability problems. A number of research efforts have been helpful
in minimizing the effects of this limitation. First, one essential
requirement is to choose errors which contain some direct algebraic
dependency upon the adjustable gains or parameters in addition to
whatever other functional dependencies might exist. This was pointed
out by Graupe (Ref. 4) and Potts, Ornstein and Clymer (Ref. 5).
Stability of identification systems using such errors was proved by
Miller (Ref. 6). Lion (Ref. 7) later extended the Miller proof to
show these systems are asymptotically stable for two broad (and useful)
classes of forecing functions. Lion also found that the key to obtaining
rapid convergence lay with using a sufficient number of linearly
independent errors. This enables one to construct a positive definite
criterion function (in terms of the adjustable gains or parameters) of
the errors. The need for additional errors can be fulfilled making use

of Rucker's state variable decomposition filters (Ref. 8).

The multiloop analysis technique developed by McRuer, Ashkenas, and
Pass (Ref. 9) is used to guide selection of quantities for feedback
and to expose simplifying identities in the filter portion of adaptive

control function systems.

A1l of the above concepts and innovations play a role in our "new"
technique. The significance of "new" lies in their unique combination

which results in the adaptive control function system. This is the




first adaptive technique, not requiring explicit identification of
the controlled element, which is also applicable to multi-control

point problems.t
GOALS OF THE RESEARCH

The primary goal in this research program was to develop an
adaptive control system capable of compensating for very rapid
variations in controlled element dynamic characteristics. The resulting
technology was to be applied to a significant flight control problem.
Stability augmentation of the lateral-directional dynamics of a manned,
lifting-body entry vehicle was selected because this problem requires
very rapid compensation for varying vehicle characteristics and because

it is a multi-point control problem of general importance.

Secondary goals were to arrive at a basic configuration for the
lateral SAS which would be consistent with present conventional design
techniques and which would considerably improve the handling qualities
over those for the unaugmented vehicle. The range of vehicle dynamics
considered is implicitly specified by a single entry trajectory. The
trajectory was specifically chosen to emphasize the dynamical problems
in terms of handling qualities. The limitation to a single trajectory,
however, was necessary in order to prevent the handling qualities
aspect of the research from overwhelming the primary goal. For this
reason, the feedback quantities and the adaptive gains used herein
should not be accepted without question for use in a broader context.
This is not to say the chosen configuration is inappropriate for
other trajectories, but rather that the configuration is most appro-
priate for the handling qualities problems fixable with the given

feedbacks. If other trajectories give rise to other handling qualities

tShipley, Engel and Hung (Ref. 10) have developed an adaptive
lateral stability augmentation system for aircraft. However, thelr
system employs explicit identification of the control element, and
the adjustment of the control system gain is open-loop.



problems for which the chosen feedbacks are inappropriate, new

choices are in order.

The techniques applied here to a flight control system, apply in
general for adaptive control of any controlled element which can be
modelled by a linear constant coefficient differential equations with
reasonable accuracy for a period approximately equal to the controlled

element response time.
ORGANIZATION OF THE REPORT

The body of the report consists of four main Sections. The
material presented in these Sections pertains directly to the design
of an adaptive lateral stability augmentation system (SAS) for a
hypothetical, manned, lifting-body, entry vehicle (MLEV). By first
developing the theory within the context of an application, and later
generalizing the development in an Appendix, we hope to spare the
readers' consideration, at the outset, of many detalils of secondary

importance.

Section IT explains the key concepts for designing adaptive
control function systems. These are then applied to design the
adaptive lateral SAS for the MLEV. The stability of the resulting
system is analyzed. Then, the "paper design'" is modified to take
non-ideal effects such as flight control servo dynamics into account,
and to eliminate physically impractical operations such as signal

differentiation.

Readers who are most concerned with the adaptive lateral SAS
configuration and system performance may prefer to skip Section IT
which deals with the theoretical development, and proceed directly to
Section IIT.

In Section IIT, the system configuration is summarized, and
performance of the adaptive lateral SAS is demonstrated. The data

presented are the result of an extensive analog simulation program.




The simulated vehicle equations of motion are time-varying and represent
entry along a trajectory which produces several different handling

qualities problems when the vehicle is unaugmented.

The effects of further system simplication are explored in
Section IV. The objective is to reduce system complexity to minimal
levels from the point of view flight hardware. One simplication in
the mechanization of the adaptiig gains replaces multipliers with logic
elements. In this case, the srstem is not only made less complex,
but the adaptive action of the system also is made independent of
forecing function level. Simulation data is presented to illustrate the

performance of the modified system.
Concluding remarks form a very brief Section V.

Appendix A summarizes the dymamic characteristics and systems
surveys for the MLEV. The systems surveys lead to a choice of lateral
acceleration feedback to rudder and roll rate feedback to aileron for

the basic SAS configuration.

Appendix B presents a more general and compact derivation of the

adaptive control function system equations.

Diagrams documenting the simulation of the adaptive lateral SAS
and the MLEV form the bulk of Appendix C.



SECTION II

ANALYSIS

In the first portion of this Section, we present a description of
the lateral dynamics of the hypothetical manned, lifting-body, entry
vehicle (MLEV). This is the controlled element used for the application
of the adaptive control theory. Next, we proceed through the steps
for synthesizing an adaptive control function system which will perform
the lateral stability augmentation (SAS) function for the MLEV. The
selection of the motion quantities for feedback is accomplished in
Appendix A using the competing systems technique. While it is the
case that the selection is based on calculations which assume the SAS
consists of linear, constant coefficient feedbacks of motion quantities,
we hold that such a selection process is best for our purposes here for
reasons of flight safety. That is, the closed-loop system should be
capable of delivering at least marginal performance, with the adaptive
system turned off and SAS gains set manually to suitable values for

emergency operation.

Once the SAS feedback quantities have been selected, we then
proceed to define the errors for adaptive system operation, choose
an adaptive gain adjustment law and then examine the stability of the
adaptive gain adjustments under certain ideal circumstances. The final
and perhaps most important step of all is that of making modifications
to the resulting theoretical design that will allow us to accomodate the
non-ideal effects which are a part of any system with real components.
The practical modification techniques presented are for coping with
the lags inherent in the flight control servos, replacing pure
differentiations with pseudo-differentiators and for adding additional

low pass filtering to combat noise.




CONTROLLED ELEMENT AND FEEDBACK QUANTITIES

The lateral MLEV dynamics are characterized by transfer functions
for the theoretical portion of this study. In actual fact, the
differential equations describing the vehicle are time-varying.
However, the time-varying effects are negligible for engineering
purposes over all of the given flight profile except for the 10 sec
or less during which the vehicle is in the transonic flight regime.

In that regime, adaptive system performance is a matter of surpassing
importance and great interest. However, analysis which takes time-
varying environmental parameters into account is beyond the capability
of the theoretical tools available. Therefore, we shall have to rely

upon simulation to indicate system performance in this regime.

The feedbacks selected as most appropriate for improving the
handling qualities of the MLEV are:

® Tateral acceleration measured 3.38 ft forward
of the vehicle center of gravity, a&, compensated
by a lead/lag network, (s + 1.5)/(s"+ 15.0), and
fed to rudder

® Roll rate feedback to aileron

Figure 1 is a block diagram of this system. A capsule summary of the
systems survey analyses leading to selection of these feedbacks is

contained in Appendix A. Clearly, the variables to be controlled are
$ and a.. A working notation, K&, is used here for the gain, Ka;, of

Appendix A.

The notation for describing aircraft dynamic characteristics
involved in handling qualities is given in Ref. 11. In-depth analyses
for explaining and predicting handling qualities for aircraft on the
basis of closed-loop pilot-vehicle system considerations is given in
Ref. 12.
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Figure 1. Block Diagram of MLEV Lateral SAS

Handling qualities problems specific to the unaugmented MIEV are

reviewed in Appendix A. They may be summarized as follows:

® Very low roll damping at all flight conditions
requires considerable lead from the pilot for
control of roll angle with aileron

® Dutch roll damping is very low at all flight
conditions

® Roll reversal ( 2 is negative) accompanied by
low dutch roll stiffness at flight condition 810
requires unconventional piloting technique which
is marginal at best.




® Too large a frequency separation between Wp and ay
early in the flight (at 630 and 725 sec) when rudder
control effectiveness is virtually non-existent leads
to roll rate reversals in response to aileron

® Too small a frequency separation between and ay
late in the flight (at 865 sec) leads to inability to
damp the dutch roll to any appreciable degree for roll
control with aileron only.

The lateral acceleration-to-rudder feedback fixes the roll reversal
(negative w¢?) problem and stiffens the dutch roll at flight condition
810. It also is used to increase the separation between mb and ay
at flight condition 865. By including lead-lag compensation, the dutch
roll damping can be increased at all flight conditions where there is

rudder control effectiveness.

The roll rate-~to-aileron feedback fixes the low roll damping
problem. It also augments the dutch roll damping and suppresses the
|o/B| ratio in the dutch roll mode.

The systems surveys in Appendix A show that reasonable choices for
adjustable gains are K¢ and Ky. K¢ should be adjustable to compensate
for the large magnitude changes in the control effectiveness derivatives.
Ky should be adjustable because there is no constant walue of this gain
which would not produce instability at some flight conditions. On the
other hand, there is no alternative to lateral acceleration-to-rudder
capable of coping with the special problems at flight conditions 810
and 865 and capable of supplying some modest amount of dutch roll
damping. In particular, yaw rate feedback to rudder cannot accomplish

all these objectives simultaneously.

- When the preferred feedbacks are used,the MLEV transfer functions

of interest are those involving aileron and rudder inputs and roll

"

rate, ¢T, and lateral acceleration, ay, outputs. The transfer functions

tWe have assumed here that $ is a derived rate obtained from a
vertical gyro operating as a free gyro during the entry.
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)

are expressed in terms of ratios of numerator polynomials, Ng )? to

the characteristic polynomial, A. Thus, for examPle, the unaugmented
aileron-to-roll angle rate transfer function is Nga/A. The subscript

on N indicates the input for the transfer function while the superscript

indicates the output.

The MLEV equations can be expressed in matrix form and in terms of

transfer functions as

b NS, Ngr By
= l " 1 (1 )
" A ay‘ a'
N NoY o
a'y Sa 81‘ r

and the control law as:

Oq K¢ 0 R 1 0 0]
s 1 " | o x e osrrs | laf]®
r ¥ 8ce s + 15.0 y

The problem at hand is a multi-control point problem. Because of
this, we will make use of the so-called coupling numerators of the

multiloop analysis technique developed in Ref. 9. A synopsis of the
multiloop analysis technique is given in Appendix A. It provides the

analytical tools necessary here.

The coupling numerator is convenient because it expresses in a
simplified and compact way a combination of numerators and the
characteristic polynomials which occurs frequently in multi-control
Here we are concerned with the aileron-to-roll,

"

rudder-to-lateral acceleration coupling numerator, N6 SY:
alr

point problems.

(b " . 1"
. N3NV - Ng Ny
Ng 8% = (3)

A




The characteristic polynomial, A, is always an exact factor of the

numerator on the RHS of Eq 3. This suggests that easier means than
o n

direct evaluation of Eq 3 can be found to calculate Ngagg. Indeed,

this is the case.

One of the really useful features of the coupling numerator is that
it can be calculated by a method analogous to Cramer's rule. That is,
Ngagi can be obtained from the Laplace transformed aircraft equations
of motion by substituting the B, control effectiveness column into the
® column of the characteristic matrix and the 8y control effectiveness
column into the a§ column of the characteristic matrix and then computing
the determinant of the result. The coupling numerator notation is

suggestive of this operation.

Numerical evaluations of the characteristics, numerator, and
coupling numerator polynomial in terms of exact factors are tabulated

in Table A-4 at six flight conditions.

The transfer functions for the closed-loop system shown in Fig. 1

are given by Eq 4 through 7. These assume K® and Ky are constants.

« 1

. ¢
5 Kp Yas Npg
o ()
BT (5)
. "
1 2y
ay Ky Yrs Nof
ac = A“ (6)
C

5 Ky Y, -

8 "
Ce A

11
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o & : 1.5) P
where Np,, = Ngo + KyYrsls = 15. O)N5a2¥ (8)

a" " . C'P "
N = oY + Ky¥, NE 2Y (9)
wo_ C.P s + 1. )
A=A KT N+ KT reTg N:Y

. (s + 1.5) & al
T KiEyYasYrs (57 15.0) 505

(s + 1.5) & cp
A+ K'yYI‘S mNy+K(pY (10)

The transfer functions which of course, concern us most are those for

the commanded variables, Eq 4 and 6.

We have at this point established and Jjustified the basic loop
configuration for the MIEV lateral SAS. (The study is actually
presented in detail in Appendix A.) We have also justified the need
for adjusting the K¢ and Ky gains. The case for adaptive adjustment
of these gains can be made based upon the rich variety of reasonable
entry trajectories possible, and the large ranges in angle of attack,
Mach number and air density which can be encountered. The first factor
eliminates time-scheduled gain changes as impractical. The second
factor together with some uncertainty in vehicle aerodynamic charac-
teristics tends to make air-data scheduled gain changes unattractive.
Manual adjustment of the gains is precluded by the rapidity of the

adjustment required in the transonic regime.

Next we shall proceed with development of the adaptive system.
CLOSED-LOOP SYSTEM MODEL

An implicit model of the closed~loop system is used in the adaptive
control function scheme. Choice of a model may be somevwhat arbitrary.

For compelling reasons, however, we make a rather specific choice here.




The model used has the same configuration as the system in Fig. 1.

What is more, we take the transfer functions for the MLEV model to be
approximately those for the actual MLEV at one flight condition. Since
the system feedbacks have been chosen because they can provide a good
SAS at any flight condition we are assured that this choice of closed-
loop model will be a good one. The settings for the SAS model gains
are, of course, those calculated in the systems surveys for that
particular flight condition. Another reason for choosing the model to
closely approximate the system at one flight condition is that we
intuitively expect this will tend to require smaller control surface
deflections than will a model less closely related to the characteristics
of the actual system. The transfer functions developed in Eq 4 through
10 apply as well to this model if it is understood that the subscript
m added to the characteristic, numerator, and coupling numerator

polynomials and the gain symbols, designates model values.

The system model transfer functions themselves are not explicitly
used. Instead, we take the mathematical inverse of these transfer
functiong. The result is another set of transfer functions which is
capable of generating model values of the command inputs, ¢cm and ac,

from given § and ay signals.

The mathematical inverse of the system model transfer functions can

be obtained most efficiently using the constituents of the system

transfer functions in matrix form. The MLEV model transfer functions are:

. o) ¢
= = (11)
la“ “n Na§ Na§ o}
Y 5, Sr m r

The model control law (neglecting flight control servo dynamics in the

model) is:

13
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5 K, 0 ) 1 0 o)
S i S R I I A IGES
d n
Srsm 0 Ky gce 0 ¥ 15.0 &y
m m
Solving for colidg, Op o in Eq 11 gives,
1" 5
5, , Ny N o
o o]
= T r r (13)
5 (Ncap gyén ay NP 3
r arr —Naa 8a ay;.
m m

Q) "

where the coupling numerator N83%¥ arises from the determinant of the

matrix of numerators when calculating the inverse of that matrix. We
can then solve for colf@c, acc}m using Eq 12 and 13.

1" 3

%1 1 0 /Ky O NS’% -Népr ‘c'p

= + —

s+ 1.0] " ay 55 3@ | ] a

accjm O T Weusd | © /Kyl |-NgY N, al

(14)

CHOOSING APPRCPRIATE ERRORS

The error signals are defined to be proportional to the differences
between the actual commands and the model representations of the commands.
Thus,

eg = (b - c.Pc:m) Kdn
(15)
er = (8, - accm) Ky

The signal e, represents error in the aileron control channel: the

subscript a standing for aileron. The signal ey, represents error in

the lateral acceleration rudder control channel: the subscript r




standing for rudder. FEach error will be used to adjust the loop gain

in its corresponding channel.

More convenient expressions for the errors are in terms of the
system servo errors, (§, - ) and (acc - 8,), and the model control
deflectiouns, Bam and 6rm' These are obltained by eliminating K@mébm
cop DEtWeen Eq 12 and 15. Notice that ac =[(s + 1.5)/(s + 15.)pY.

The result is:

and Kyma

€a

(C.PC - (b) Kc'pm - Bam
(16)

e-r = (acc - ac) Kym - Srm

These equations are the mechanizational basis for the system and we

shall return to them later.
STABILITY CHARACTERISTICS AND GAIN ADJUSTMENT LAW

Always vitally important as a performance indicator is the stability
of a system. The crucial underlying design principle in our effort is
to seek a system which is stable under reasonably defined ideal
conditions. This has been accomplished. Notice that from the synthesis
point of view, system stability rather than satisfaction of some
criterion function is the prime objective. After a stable design is
obtained we shall then seek the criterion function implied as a matter
of curiosity. We shall defer elaborating upon "reasonably defined ideal

conditions" until the equations are set down.

The first step is to develop expressions for the errors in terms of
parameters differences. Subtracting from Eq 16 the system feedback

equations (see Fig. 1):

@)
]

Kg (9. - 9) - d
bt @) "0 (17)
0 = Ky (ac, - @) - dr
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and defining the gain-differences,

MKy = Ko - Ko
(18)
results in the following error equations:
ea = (¢C - @) AK¢ - (Sam - Sa) ( 9)
1

ey = (acc - a,) A (Brm - 3,)

The next step is to define the rules by which gain changes will be made.

The gain adjustment laws are defined as:

= Ap (s - B) eq

&

(20)
= Ay (aCc = aC) €y

&
!

where A@ and Ay are positive constants. They are the adaptive loop

gains. In terms of the gain-differences defined by Eq 18 the adjustment

laws are,

'Aé (¢c = @) ea
.Y Ay (acc - ac) €r (21)

5

&

since K¢m and Kym are constants.

By substituting Eq 19 into Eq 21 we obtain

-y (9e - 97 2K + 15

2
= -Ay (acc - a.)" MKy + f

¢

(22)
y




where: fp = Ly ($e - ¢)(Sam - Bg)

(23)
v = Ay (ac, - ac)(8y, - &)

H
|

Equations 22 are first order differential equations with time
varying gains and forcing functions given by Eq 23. They describe the

dynamic response of the adaptive loops.

Equations 22 indicate that the adaptive system is stable in the
sense that for fg and fy equal to zero, LKy and AKy as functions of time
approach zero monotonically. This follows from the fact that the time
varying gains in the homogeneous equations are always non-positive.
That is, for example in the AK§ equation, the term ['A@(¢c - ¢)2] is
either a negative number or, at worst, zero. Thus when f¢ and fy are
identically zero, AK¢ and AKy cannot diverge.

In addition to these favorable stability features, there is another
important attribute of the system. The adjustable gains are uncoupled.
An offset in one gain will not result in a transient disturbance of
the other gain when o) and fy are zero. Traditional multi-parameter
adaptive systems have often suffered from coupling which, with

increasing adjustment gain, generally tends to cause oscillatory behavior.

Now we must examine what conditions are implied by f¢ and fy equal
to zero. These conditions will in fact be those "reasonably defined
ideal conditions" mentioned at the beginning of the subsection. Hence
the conditions are actually requirements for validity of our conclusions
on stability. DNotice that f¢$ and fy are zero over all time if and only
if ($o - @) or (Sam - 8,) and (acc - a,) or (Srm - ®y) respectively
are zero over all time. When a servo error, (¢, - $) and/or (acc - a.);

is zero, the following observations hold:

® The system output quantity related to the servo
error which is zero is exactly equal to the
commanded quantity

17
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® When a servo error 1s zero the rate of change
of the corresponding adaptive gain is zero.
See Eq 20.

The first observation sbove leads to the conclusion that if a servo
error is zero for all time there is no need for adaptive action in

that channel. The second observation leads to the conclusion that if

a servo error is zero for all time, indeed, there will be no adaptive
action in that channel. This then constitutes a trivial case. The
alternative way for f¢ or fy to be zero is for (6am - By) or (Srm - 3y)
respectively to be zero. If fp and fy are to be zero over all time in
the non-trivial case, (Bam - B5) and (Srm - ®p) must be zero over all
time except at isolated instants when a servo error is zero. Conditions

for (8am - 85) and (6rm - 8p) to be zero for all time are:

® No vehicle-vehicle model mismatch. Stated another
way the vehicle and the vehicle model must have
precisely the same transfer functions and

® The initial conditions on the corresponding vehicle
and vehicle model variables must be the same and

® No disturbance inputs may act on the vehicle.

While these restrictive assumptions are severe, the stability for this
special case of Eq 22 is a most gratifying and important characteristic.
This special case of Eq 22 provides a firm and attractive theoretical

basis for adaptive system operation.

Let us consider the stability of the errors ey and ey under the

same restrictive assumptions. Equations 19 become

ca = (9o - 0) &K

(24)
r (acc - ac) 2Ky

(0]
11




Clearly these errors are always asymptotically stable to zero since
either
L AK( ) goes to zero by virtue of Eq 22, or
L AK( ) goes to a constant value by virtue of
Eg 22. This implies that the servo

error is zero since otherwise AK( ) would
approach zero.

Under these assumptions, if the gain adjustment law given by Eq 20
is a steepest descent law, the criterion being satisfied (to within

an arbitrary, multiplicative, positive constant) is:

T =1/2 (8 &% + Ay e,2) (25)

That this is so can be verified by computing 8J/8AK¢ and 0J/d/Ky using
Eq 24 and noting that:

Ko = - 5%%5 = -Ap(9e - ey

&

5 (26)
My = - m% = ‘Ay(acc - ac)er

Certain observations can now be made about stability for the more
general case of Eq 22 when the forcing terms are not zero. First of
all, for a well chosen model; one which is a reasonably close
approximation to the vehiele in the regime of flight being considered,
the forcing terms will be small in the sbsence of disturbance inputs.
This conclusion follows from the fact that each forcing term contains a

factor 6( ) - 6( ) which becomes vanishingly small as the model and

the plant begbme the same. Nevertheless, there will actually be some
small smount of forcing due to this mismatch, and the adjusting gains
will accordingly be perturbed. As a matter of fact, this same effect
will also cause a small amount of cross-coupling between gains through
the forcing terms. Neither of these non-ideal effects is expected to

be troublesome.

19



Next we shall write some equations to express these qualitative

observations. The approach will be to express (Sam - 85) and

20

(Brm - 3) in Eq 22 in terms of the servo errors, disturbance input
and transfer functions for the vehicle and vehicle model. From Eq 1, 2,
13 and 18:
b _ay v P
By - Da ¥ -1 [(cbc - $)(Kg, - AKq;)]oC 4
(Nsazsr)m
N NRY - NaYNG
G S [ (K, - £Ky)
+ o al ey - Be)Kyy Y
Aot
m
NENEY - NN
+ = d
(p ")
A(N%g‘g )
1\78%;’N(p 1\Tc.P Na§
Ba; 6am - %y 8am
Brp ~ Or = oo [(cpc -¢)(K¢m-u<¢,)J
A(Naaa A Ip
" c'p @ a"
N§¥N5a - NbI‘NSam
+ NEE -1 (ag, - ac)(Ky, - £&K)
68.61' m £
NSB’Né"am NoweY
+ Pk (27)
A(N5a§¥)
m
t [

o

denotes the Laplace transform of the time domain quantity,[-].




Substitution of Eq 23 and 27 into Eq 22 gives:

¥y @

. 8a Orp Bry Oa
AK(.P = AC.P(q)C = C.P) A(Nc‘p av);_) {(('Pc - (b) AKq.)}
o) Srm _

®

o yoy - @
NE. 8T NarmNgg

cb au
A (Nfiaﬁi)n

- 8% - )
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> 2V -0
NS NY - NS N
Sap Or Sy dap

a“r CL1—1
g - nEy g
m am
+ AyKym(acc ac) b an (9 - 9)
A(N8a5 )

C'P 1" ] a"
N5 N - NgNagm

+ Ay(acc - ac) N Ncb a:y" d (28)t
5a5r =1 ’
" L
tNotice that Eq 28 are time domain equations. [-] ] denotes the
inverse Laplace transform of the frequency domain "
quantity, T




Next we shall discuss the significance of the terms on the RHS of
Eq 28. The significance of like numbered terms in each equation is the

same.

Term (:) is the principal term. When no controlled element
mismatch exists, the factor contained by the vinculum is unity, and
the coefficient of AK( )is non-positive. When mismatch is "small",

this factor tends to consist of pole-zero dipoles.

Term.(:) is a gain-difference cross-coupling term. When no
controlled element mismatch exists, the factor contained by the
vinculum is zero, and the cross-coupling vanishes. When mismatch is
"small", the numerator polynomial coefficients of this factor tend to
be "small". This term represents a controlled element mismatch

cross -coupling effect.

Terms <§> and (:) are controlled element mismatch forcing effects.
When no controlled element mismatch exists, these forcing terms vanish
by virtue of the values assumed by the factors contained by vincula as
discussed in conpection with terms (E) and (:).

Term <§> is a disturbance input forcing effect. When no controlled
element mismatch exists, the factor contained by the vinculum becomes

1 -
the ratio of coupling numerators, Nday/NS gz for the AKp equation, and
Ng dy/Ng ay for the AKy equation.

The above observations lead to the qualitative conclusions that
controlled element mismatch and disturbance inputs can each be expected
to provide both steady and transient forcing of the AK( ) responses.
The question of stability of the AK( ) responses remains open for the

most general case.
MECHANIZING THE SYSTEM

With the theoretical development of the adaptive system accomplished,
we are faced with the task of identifying ways for realizing the system

within the limitations of physical devices. The mechanizational bhasis
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for the adaptive system is given by the equations below.

* *
e = (& - ) Koy = Oay = F(s)e,
* * (29)
ep¥ = (acc - ag) Ky, - dr, = F(s)e,
Ky = Aglde - B en*
. v : (30)

Ay(acc - ac)” er”

e

These equations are quite similar to Eq 16 and 20. The exception is
that starred quantities are used in Eq 29 and 30. The starred
quantities are obtained by passing the corresponding unstarred
quantities through high frequency cut-off filters with transfer
functions, F(s). Subsequent discussion will make the need for this

filtering in practical mechanization apparent.

Examination of Eq 29 and 30 shows that aside from the signals
available in the system, (. - ) and (acc - a,), we will also require
Sam and Srm. These are generated by filtering the outputs of the
vehicle sensors, @ and a§ with transfer functions representing the
mathematical inverse of the vehicle model. Refer to Eq 13. The

problem here is to realize these transfer functions.

Below,we will show how this may be accomplished with a single
filter. Consider the vehicle equations of motion, Eq A-1, A-2, A-k
and A-5 presented in Appendix A. Here we will be discussing these
equations as they pertain to the vehicle model. Certain approxima-
tions can be made in the model for the sake of simplicity. Namely, 04
(lX + Yar/Nér), L;, 15, Nﬁ and Ny can be set to zero. Ygr can be set
to zero in the sideslip equation but not in the lateral acceleration

equation.T The term (g/VTo)cos 0,9 is set to zero in the sideslip

TY, could also be set to zero insofar as the accuracy of the
approximations is concerned. We retain it here so that the roots of

"
(Ng;g¥)m will have a positive damping ratio.




equation. For simplicity in the model equations, approximate 1,

by lXo = _YSr/Nér' The effects of all these approximations are
negligible. 1In fact, if we make similar approximations in the
vehicle equations, the short term time responses are imperceptably
changed. This is also true for the long term responses with the
exception of (g/VTo)cos 0,9 approximation effect. All these con-
siderations can be combined to write the equations of motion for
the model as

(s - Yy) -xfro/vr_[:O UO/VTO 0 B
—Lé s 0 0 0]

: 4 ) =
-Ng 0] s 0 r
-VTOYv 0 s Ygr/Nar 1 ay

An /
- m
0 0
1 ] 6
LSa Lsr a
' : . (31)
N N
53, 81‘ r -
0 Ygr
L n

The polynomials which form the transfer functions in Eq 13 are related
to Eq 31 in following ways. Using Cramer's rule and its counterpart

for the coupling numerator we find:

(s - Y,) -Wo/Vip, Uo/Vog 0
1 ]
1 -L S 0
wo- | o
m -Ng 0 s Ng.. (32)
1
-V Y, 0 s Y5,/N5,. Yo,
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[oZ
Il

n? %y -
8a6r

(s - Yy)
_Lé

-NB
Vi Yy

(s - ¥)
_Ls

-NB

-VTOYV

-wo/vTO

1

S YST/NST

UO/VTO

s Y /Ng_

UO/VTO
0

s

s Yar/Nér

Uo/VTo
0

S

s Yo.,/N5.,

(33)

(34)

(35)

(26)

Considered together with Eqg 13 these determinants imply the equations

for mechanizing the filter for generating Sam and Srm from ¢ and

ay.

We can write down a set of equations having the same transfer functions

as Eq 13 by inspection of the above determinants.

In actual fact, we

are applying Cramer's rule in reverse in this "inspection" process.
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i , ]
(s - Y,) 0 U, /Vp, 0 X,
' ' '
-Lp s, 0 Is, 5,
-Nﬁ Naa S NSI‘ X5
Vi Xy 0 s Y5 /N5, Y5 5.
L lm .
E 0 |
WQ/VTO
S 0 ¢
(37)
0 0 ay;
| 0 1 m

This filter is only second order and may be mechanized quite simply
using operational elements. The mechanization resulting after the
algebraic loops in Eq 37 are eliminated is shown in Fig. 2. The values
of the coefficients for Fig. 2 are given in Table I. Notice in Fig. 2
that there is an implied requirement that we elther measure $ or
calculate § by differentiating ®. Neither alternative is really
acceptable. We can get around this point by using a pseudo-differentiator
to obtain $* from ¢ and insert a cut-off filter in all the other

input paths to compensate for the characteristies of the differentiating
filter. This amounts to specifying part of the filter, F(s). That

is, if the pseudo-differentiator has a transfer function (s/T)/(s + 1/T)
then F(s) will contain the factor (1/T)/(s + 1/T). To this point, we
have neglected the flight control servo dynamics. It is clear that the
servo dynamics will interpose between the gains, K@ and Ky, and the
control surface deflections Oy and By respectively. Refer to Fig. 1.

We could include the flight control servo dynamics with the vehicle

27
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TABLE I

FILTER COEFFICIENTS

COEFFICTENT LITERAL EXPRESSION
Aq ['Nér/ (NéaYSr) ]m
P R PG
Ry l N Ls, /(Yo N5, 15 ) ]m
o | [m, - me )

* YVNB‘I‘I%)&/( YngéaLér) ]m

2 8,280, - 8, /16,0 M 18,0,

X, |35, { e - ¥ v/x8 )/,

- (Lé - Léer/Ygr)}'/Lér]m

equations of motion by calling the servo commands &5 and &, instead

of servo outputs. We could then proceed in a routine fashion to

calculate the filter equations etc. We would find, however, that more

differentiations would be required to generate inputs for the filter.
Ultimately pseudo-differentiations would be employed for practical
reasons. Therefore, it is useful to short-circuit this process by
noting that the flight control servos act in the same manner as
factors of F(s) operating upon ¢ and a;. By merely placing similar
factors in the F(s) operating upon ($. - §) and (acc - a,) we can
preserve the relationship of Eq 29. If we assume that both flight
control servos have the same transfer function, 25/(s + 25),and if we

take 1/T in the pseudo-differentiator to be 15.0/sec., the following
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equations will hold:

(e - &) = s525— 52— (% - @) (38)
(ac, - ac)” = 3 151'5. s E5é5. (ac, - ac) (29)
-2 0 (10)

¥ - {s ¥ 15, } (1)

ay" = {s ¥ 15, } (2)

The braces on the RHS of Eq 41 and 42 are to call attention to the
fact that these signals are generated in the filters for obtaining @f
from ¢, and a, from a§ respectively. In the latter case, we can now
see a very modest simplification was afforded by choosing the time
constant of the pseudo-differentiator equal to that for the feedback

compensation pole.

If it is necessary to include sensor dynamic effects or additional
signal conditioning filters, these may be included in a manner similar
to that for including the flight control servo dynamics. A word of
caution is in order, however. The theoretical treatment of system
stability given earlier assumes throughout that F(s) = 1. Any
deviations from this, particularly those which will introduce
appreciable lag within the bandwidth of the augmented vehicle, might
cause instability of the adapting gains when the adaptive loop gains,

A@ and A y, are at very high values.

At this point, we shall summarize the adaptive system mechanization
to set the stage for discussion of the system simulation in Section ITI.

The adaptive system is mechanization shown in Fig. 3. It is worthwhile
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to remark here that the amount of equipment required to mechanize this
adaptive system is indeed modest. Consider that the equipment spanned
by arrow A in Fig. 3 is required for any system in which gains are
adjusted, as for example, in an air data scheduled system. The equipment
spanned by arrow B in Fig. 3 is specifically for the adaptive control
function mechanization. Required are two electronic multiplications,
two second order filters with real poles and one third order filter.
These relatively modest equipment requirements for the adaptive
control function mechanization are remsrkable considering the breadth
of capabilities for which the system is designed, and in contrast to
the amount of equipment required for some earlier adaptive system
designs. (See for example, Ref. 3, 10 and 13 through 15, each of

which must be regarded as a competent and successful effort.)




SECTTON III

SIMULATION RESULTS

We present here the results of a simulation effort to demonstrate
the performance of the adaptive control function system described in
Section IT. The nature of the gain adjustment, that is, speed and
stability (tendency toward oscillation),as well as sensitivity to
various disturbances, such as mismatch and gusts, are the items of most
general interest. But, realistically, and ultimately, performance
assessment must deal with the ability of the adaptive system to cope

with the problems for which its use is specifically intended.

Our viewpoint in this study is to demonstrate a new adaptive method
in the context of a particular control task. That task is the time
varying augmentation of the lateral motions of a manned, lifting-body,
entry vehicle during a critical segment of its mission. The vehicle is
& hypothetical one which exhibits a variety of handling quality
problems. Some of the difficulties do not specifically depend on
adaptive augmentation for their correction. For instance, the roll
damping deficiency of the bare airframe may be remedied with a fixed
gain roll damper. The overall handling quality problem cannot, however,
be solved without resorting to time varying gains in the multiloop
augmenter as has already been demonstrated. We show in this Section,
not merely that the gains can be changed automatically, but also, and
more importantly, that the rationale for constructing the system is

legitimate.

In attempting to validate the adaptive control function concept
we face a certain difficulty: +the system is non-linear. Analysis
presented in Section IT goes a long way toward solving the non-linear
equations but, not surprisingly, a general solution evades us. The
simulation effort is, therefore, more than a means to communicate the
results in a widely appreciated format. It also serves to extend

and strengthen the analytical results where exact mathematical solutions
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not unavailable. Specifically in the important case when mismatch
(vehicle model not equal to vehicle) is present, simulation is needed

to support the analytical results.

Figures 1 and 3 in Section II have shown block diagrams of the
system and have defined symbols. The text describes both the features
of the adaptive system and the handling qualities problems with which
we are dealing. Appendix A describes the vehicle and the results of
SAS configuration surveys. Reference 16 also provides this information.
Appendix C gives the details of the simulation. Some readers may prefer
to review that Appendix before reading this Section. Figure 4, presented
here, summarizes the adaptive lateral SAS configuration which is evolved

in the other Sections of this report cited above.
ADAPTIVE SYSTEM OPERATION

Attention will be focused, for the moment, on fixed flight
conditions. Flight condition 810 is especially important because
the model of the vehicle has been selected to be very nearly the
same as the vehicle itself at this time of flight. Some obviously
accurate simplifying assumptions: Lé, L;, N; and N; = 0, have been
made in implementing the model and, in addition, an artifically large
side force due to sideslip, YB’ has been employed to improve the

modelt characteristics. ¥Yp provides damping of the coupling numerator

3 "
(Ng;gﬁ) singularities. These are the poles of the model as it is

implemented.

At flight condition 810, the analysis proves asymptotic stability
when only command inputs exist. If the adaptive system failed to
achieve the "ideal" performance predicted by the theory in this
no-mismatch situation, one would hold little hope that satisfactory

operation could be obtained in the presence of mismatch.

t"Model" in Section ITII will be used to mean "inverse of the MLEV
model" for sake of brevity.
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Part a of Fig. 5 shows the responses of the system to a square wave
roll rate command for the no-mismatch case. The roll rate response is
excellent. The adaptive stability augmentation system gains, K¢ and Ky,
are initially set at the same value chosen for the model. It is observed
that (adaptively) the gains prefer a slightly higher value. This is
because of the small differences between the model and the vehicle.

(See above.) While the offset correction is small it is worth noting
that the adaptive system provides a valuable function here, that is,
it might compensate for unknown deviations from the mathematical model

of the system.

One of the first questions resolved by the simulation was the
effect of including the primary lateral piloting task, control of bank
angle with aileron. Recall that the system design (Section II) did
not account for the presence of this outer loop. An analysis showed
that the pilot loop did introduce additional terms into the adaptive
system stability equations but that these were not expected to have a
deleterious effect. This is the case, as is shown by comparing Parts
a and b of Fig. 5. The gain responses for the two cases are very
nearly identical. No situations were encountered where the presence
or absence of the pilot loop closure made more than a minor difference
in adaptation. In all the cases which follow, the pilot closure is

included.

We have already reached the conclusion that when the gains are
initially very near their optimum or desired values the adaptive process
is well behaved. Figure 6 shows the gain respomnses for all combinations
of large, high and low, initial offsets. The offset magnitudes are
roughly 50% of the correct values for each gain. In each case the
gains change toward their desired values. The adaptive process performs
the function we desire. More than that can be said. It is particularly
noteworthy that the gain adjustments are uncoupled. That is to say, an

error in the initial value of only one gain does not result in a
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read justment of the other, correctly set, gain. See the portion of
Figure 6 labeled, "One-at-a-time offsets." This is indeed a most
desirable situation since the possibility of "ping-pong" adaptation
is circumvented. This phenomenon has been responsible, at least in
rart, for disqualifying certain adaptive schemes as candidates

for actual application in aerospace vehicles.

The adaptive loop gains used to generate the SAS gain responses
shown in Fig. 6 are those which optimize the real flight time situation.
They can, however, as the analysis predicts, be made much larger for
this particular input and flight condition. But at other flight
conditions, where there is substantial mismatch between the vehicle
and the vehicle model, only slightly higher gains may be employed.
Figure 7 shows one of the adaptive gains, K@, responding from a low
initial value when the same square wave roll angle command used
previously is impressed upon the system. Two flight conditions are
shown, 810 and 790. In each case the responses for two adaptive loop
gains are shown, the nominal gain and ten times the nominal gain.

For the nominal adaptive loop gain the responses are quite satisfactory,
converging nicely to the optimum value in each case. When, however,

the adaptive loop gain is increased by a factor of ten (20 dB), an
oscillatory response occurs. At the 810 flight condition the
oscillation is small and reasonably well damped. (The oscillation here

must be attributed to non-ideal effects in the simulation.)

At condition 790 the oscillation is much more severe. It would not
be unfair to characterize the adaptive system as marginally stable in
this case since the gain K¢ appears to limit cycle between two levels.
As it happens, however, the system responses are entirely satisfactory,
and, in fact, are hardly distinquishable from those which occur at
condition 810. Further it must be pointed out that a more realistic
input, one with greater frequency content, was observed to produce a

smooth, monotonic gain function which converged, in time, to the
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optimum value. Also a smaller initial gain offset markedly improved

the form of the gain response. Thus, in more ways than one, the
situation at flight condition 790, depicted in Fig. 7 is a bit contrived.
Our intent is to show, as the reader must suspect, that there are
combinations of flight condition,input spectrum,initial gain offset

and adaptive loop gain for which adaptive system performance may not

be entirely satisfactory. It is comforting to find out that the
conditions under which the adaptive system begins to misbehave are
very,very far from those under vhich it will, in a real situation, be

likely to encounter.
HANDLING QUALITY ENHANCEMENT

At the outset of this program the critical segment of the mission
was determined to be between 620 and 870 seconds. During this 250
second interval which includes high supersonic through subsonic flight
regimes, the vehicle dynamics vary very markedly. Among the handling
quality deficiencies which arise, either individually or simultaneously,
are, as we have seen, low roll damping, low rudder and aileron control
effectiveness, the possibility of roll rate reversals in response to
aileron steps, roll reversal(w% < 0), adverse rudder induced roll,
high l@/ﬁl ratio in the dutch roll mode and unfavorable wm/ma ratios.
These problems are not all mutually exclusive. The stability aug-
mentation system must improve many vehicle deficiencies in addition to

compensating for control effectiveness variations.

Six flight conditions were selected from the 250 second mission
segment so that surveys could be made to determine the best stability
augmentation system configuration (Ref. 16 and Appendix A of this
document). The flight conditions as designated by the corresponding
flight times are: 630, 725, 810, 840, 850 and 865. (We have already
dealt with flight condition 810, the case where the model of the
vehicle and the vehicle are very nearly identical.) The flight

conditions are more closely spaced in the transonic region where the
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stability derivatives experience large and rapid varialions. Mach 1.0

flight occurs between 840 and 850 sec.

Prior to 725 sec the control effectivenesses are extremely low.
Thus augmenter effectiveness will be limited. Rate and position
limiting of the control surfaces will occur nullifying the attempt to
compensate for the low control effectivenesses with high augmenter
gains. In practice, reaction controls would be imperative during the
early, near zero dynamic pressure, portion of flight. The adaptive
technique might be used to blend the reaction and aerodynamic surface

control modes during the transition from one to the other.

In addition to the low control effectiveness of both the rudder
and the ailerons, the unaugmented vehicle possesses troublesome
dutch roll characteristics in the early portion of the reentry.
Specifically the ratio dq/uﬁ is lower than 0.7, the value often used
as the lower bound on an acceptable aw/&a. Only partial correction
of this difficulty is possible because of the absence of rudder
control. Thus, incipient roll rate reversals will be apparent in the

real time data shortly to be presented.

In consequence of the low control effectiveness and the exclusion
of reaction controls from consideration in this study, the adaptive
gains would, if unconstrained, seek unrealistically high levels during
the early segment of the flight. To avoid this situation, limits are
imposed on each of the adaptive gains. (Limits, of course, would
always be included in practice.) The limiting is implemented in a
simple manner. It employs a servo motor with tachometer feedback to
make it act as an integrator, a clutch and a pot whose arm, driven
from the clutch, has stops to restrain its motion. This scheme is
shown in the sketch below along with the corresponding electrical

analog which was actually used in the simulation.
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Subsequent to 725 sec the control effectivenesses go through a
large excursion. Their rates of change are particularly large during
the transonic flight regime, 840 to 850 sec. While the pilot can
adapt his gain to compensate for large control effectiveness variationms,
say by a factor of 100, he prefers not to. He will downgrade his rating
of the system as his gain changes even though he can maintain good
closed-loop control. Presently it will be shown that, in consequence
of the particular system configuration which was selected, the pilot's

gain adaptation is minimized by the action of the adaptive SAS gains.

With this background,the real time behavior of the adaptively
augmented MLEV can be discussed. Figure 8 shows a 250 sec run which
encompasses the entire mission segment of interest. The time scale
is necessarily severely compressed so that only a gross view of system

response and parameter adjustment can be discerned.

The input for this run, shown in the top trace, is a square wave

bank angle command. No gust disturbances are present. The pilot's
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loop is closed at constant gain. The dominant frequency (fundamental)
of the input is approximately one rad/sec. The second trace shows the
roll rate response. Three expanded excerpts from this trace are
presented to show system characteristics at flight conditions 650, 810
and 865. Notice the incipient roll rate reversal at 630, the very well
behaved response at the no-mismatch condition, 810, and the presumably

acceptable response at 865.

The third, fourth, fifth and sixth traces are: aileron control
channel error, ey, rudder control channel error, e,, aileron gain, K@,
and rudder gain, Ky. The errors are initially large because of the need
for higher gains to compensate for low control effectiveness. At flight
condition 810 the errors are small and the gains have decreased from
their limits and lie near the gains specified by the model; K¢ = -1.0
and Ky = -.316. The gains then continue to decrease and finally

increase again during the final 20 sec of flight.

The time histories of the gains are not smooth in this case
because of the step nature of the command. The rudder path gain, Ky,
in particular, has large spikes superimposed on a fairly smooth average
characteristic. It should be recognized, however, that the square
wave input, although it conveniently provides roll responses which can

be easily Jjudged by eye, is obviously not a realistic one.

In Fig. 9 the input command is a quasi-random time function having
an approximately Gaussian amplitude distribution. (See Appendix C
for details.) Otherwise the situation duplicates the one shown in
Fig. 8. Again, the errors are initially large, very small at flight
condition 810 (no mismatch) and then increase somewhat by the end of
the flight segment of interest. The gain time histories have approxi-
mately the same characteristics also, being initially high, dropping
down as the control effectivenesses increase and, finally, increasing
at the end of the flight segment.

It is interesting to compare the actual gain time histories during

the final minute of flight with the desired ones inferred from the
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surveys. Again referring to Fig. 9 we see overplotted on the gain
traces, dotted curves which pass through the survey gain values
indicated by the diamond symbol. These values, however, were based on
a handling quality assessment and should not necessarily be taken to
be the anticipated action of the adaptive system. Nevertheless the
correspondence between the simulation result and the results of the
surveys is remarkably good. Assuming that the surveys produced "optimum"
gain schedules from a handling quality viewpoint (which was the desired
objective, but was admittedly only approximately accomplished),

it follows that the adaptive system tends to provide optimum handling
gualities. The system performance objective has, therefore, been

achieved.

Returning for a moment to the important matter of control effective-
ness, it may be shown that the adaptive system provides a valuable
function in this regard also. It has been pointed out that, while
pilots can adapt their gains to compensate for gain variations of the
controlled element, they prefer not to. Figure 10 shows comparisons
between ILéaI and |K¢Léa] and between INér‘ and leNér|. The objective
here is to indicate that the range of gain variation of the unaugmented
vehicle is considerably larger than the range of gain variation of the
vehicle with adaptive augmentation. %éa and Né are taken as
measures of bare airframe gains and Kﬁlﬁa and KyNgrare, of course, the
corresponding gains when the augmenter is present and the pilot's
inputs are used as augmenter commands. The aileron gain range is 10:1
without augmentation and about 3:1 with augmentation. In the (less
important) case of the rudder path, the ranges are about 3.5:1 without
augmentation and 1.35:1 with augmentation. Hence, the suppression of

gain variation effects is helpfully great, about 3:1 in each case.

The last remaining item of concern is the effect on performance of
including disturbance inputs. In this regard, certain limitations

were imposed on the effort. A very simple gust model was used because

only a limited amount of equipment was available for its implementation.
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The gust characteristics were assumed invariant throughout the
flight segment considered. This assumption is admittedly unrealistic
because of the speed and altitude range through which the vehicle flies.
Nevertheless, the assumption is not necessarily unconservative, and

therefore does not place the results in question.

The second limitation imposed by practical considerations was
that the disturbance input had to be correlated with the command input.
The same input signal generator was used to produce the fundamental
component of both forcing functions. Ideally, it would have been
desirable to generate an independent gust disturbance, one which

corresponded to known atmospheric turbulence models.

Figure 11 shows the effect on the K¢ gain response of including
the gust input. The system is forced by a square wave bank angle
command and a quasi-random side gust, Sg. Both these time functions were
used previously. The time segment is from 700 to 870 sec. The first
80 sec have been dropped from the record since no interesting infor-
mation is lost by doing so and also so that the time scale may be
expanded. Only the aileron gain K¢ is shown in Fig. 10 although the
Ky gain 1s also being adjusted adaptively.

For the purpose of comparison a second K¢ trace is shown in
Fig. 11 and is labeled "without gust present.” This gain time history
results in response to the application of the same bank angle command
but without the gust disturbance input. There is little difference in
the gain functions. Thus, for the disturbance used here, nearly

optimum handling qualities, as previously defined, are still maintained.

As the level of disturbance is increased in relation to the command,
the gains tend toward higher values. This is entirely proper from the
viewpoint of minimizing the aileron and rudder control channel errors as
they are defined. The model does not include disturbance effects so
that the system attempts, with high gain, to suppress gust induced

output motions. This is not at all undesirable and, in fact, can be
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thought of as motivating, in part at least, the use of adaptive
stability augmentation. That is, when and if a gusty environment is
encountered, the adaptive system provides a means for increasing the
gust suppressing function of the SAS by raising the gain. When the
turbulence subsides the command-response transfer function character-
istics are automatically reoptimized with lower gains. In a fixed

or preprogrammed SAS configuration, the trade off between gust
suppression and command-response characteristics must be made ab initio.
When, as might occur, the two requirements lead to opposing controller
specifications, the optimization is accomplished over the enseumble

of anticipated gust environments and leads to the best average
performance. An adaptive system, on the other hand, might be said to

optimize performance for each particular flight environment.

The important points which have been made in this Section are:

® The gains will adjust rapidly and in an
uncoupled fashion and when the vehicle and
the vehicle model are nearly identical.

® Mismatch, while somewhat bothersome for very
high adaptive gains, is easily accomodated for
gains appropriate to the real-time adaptive
problemn.

® The adaptive system provides near optimum
handling qualities as they were defined by the

surveys.

® Disturbance inputs do not degrade operation of
the adaptive system.
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SECTION IV

SIMPIIFICATION OF THE SYSTEM

DIGITAL ADJUSTMENT LOGIC

A charge frequently leveled-at adaptive systems is that they are
overly complex. This seems to be especially true when no pressing
need for the adaptive feature exists. Stability augmentation systems
have, for some years, been designed for all kinds of aircraft, and
have operated successfully, without the benefit of self-adjustment.
Reference 17 perhaps provides the only imperative justification for
the adaptive feature in flight control. Where the need does exist,
and it may be that the manned 1lifting-body problem is one such
application, the complexity of the proposed scheme actually seems
modest in relation to the resulting benefits. Nevertheless,
simplifications are always worth seeking. One simplification might be
digital gain adjustment logic as an alternative to the more complex
analog gain adjustment logic which exactly implements the theory
described analytically in Section II. The all-analog system was, of
course, the one investigated experimentally with the results presented

in Section TIII.

The multiplier which weights the error signal for each adaptive
gain provides the function specified by "X" in the general gain

adjustment equation,

> de
K = Ak x §) (43)
where A 2 adaptive loop gain
e & an error signal
de/oK 2 the error weighting

signal for the gain K.




Equation 43 will be referred to as implementing the analog adjustment
logic in distinction to the digital adjustment logic to be discussed

next.

A gain adjustment law of the form
I.{=Asgn (e g—;) (4h)

suggests itself as an alternative to the analog adjustment law given
by Eq 43. The symbol "sgn" indicates the signum function which is
defined by

-1 x<O0
sgn(x) =< 0 x=0 (45)
+1 x>0

Equation (44) is referred to as the digital adjustment logic. The
gain rate, k, will be plus or minus A depending on the sign of the
product, e X de/K and zero when e x Je/JK is zero. Thus, for one
thing, the dependency of the gain rate on input magnitude is removed.
This itself might be a substantial advantage of the scheme. But a
marked mechanizational simplification also results because of the

identity

sgn(xy) = sgn(x)sgn(y) (46)

Thus it is not necessary to multiply e and Je/dK since Eq 44 may now

be written

K = A sgn(e)sgn(de/3K) (47)

Now, the "sgn" operator represents an ideal relay so that this adjust-
ment rule can be mechanized with electronic switches (fast relays)
and AND gates. Figure 12 shows both the analog and the digital gain

adjustment schemes. A typical electronic (quarter-sqpare) multiplier
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is shown since high bandwidth requirements dictate its use. The
digital adjustment logic employs comparators to provide A/D conversion,
AND gates to provide logic operations, and electronic switches to
provide D/A conversion. Three summations and two inversions are
required in the analog system while only one summation is required in
the digital scheme. The hardware needed for the digital adjustment
logic is considerably simpler and therefore probably more reliable than

that needed for the analog adjustment logic.

In both mechanizational schemes some additional logic may be
reguired for practical reasons. First,threshold is needed to washout
low level d.c. signals which might otherwise tend to bias the gain in
one direction or the other. It is also even likely, as we have seen,
that, for very high adaptive gains a limit cycle will occur because of
the closed loop nature of the adaptive scheme. In order to circumvent
both these possibilities, threshold may be added to each scheme with

two additional comparators.

The second additional logic function dictated by practical
considerations is for 1limits on the range through which the adaptively
set gains can vary. (The necessity for an upper limit was discussed
in Section IIT.)

MODIFICATION TO STABILITY ANALYSIS

The fact is clear that the gain adjustment law given by Eq 47
results in a simpler system to mechanize. The important remaining
question is, "How does such simplification affect the stability of the
adapting gains and the errors?" We shall examine this point here. The

simplified gain adjustment laws for our particular example are:

DK -Ap sen($, - )sgn(ey)

AKy

(48)

-Ay sgn(ac, - ac)sgn(ey)
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Stability analysis here, as before in Section II, can be carried
out only under the restrictions that there is no controlled element
mismatch and that no disturbance inputs are acting. Equation 48 then

reduces to

-Ag sen MKy sgn(d, - $)°

-Ay sgn AKy sgn(acc - ac)2

4

(49)

B

The above equations each are stable, but not asymptotically stable.

That is, OKp and MKy do not diverge because the rate of change of each

K is either in the direction of the origin or is zero.

This describes system stability in terms of the gain deviations.
While this is one interesting aspect of the problem, there is another
which concerns us equally. We are interested in system stability in
terms of the errors. In addition, we would like to know what criterion
is implied. It is easy to verify that the criterion implied, assuming

that Eq 49 represents a steepest descent law, is:
T = by || sen(de - 9)7 + Ay |&Ky| sen(ac, - 8))®  (50)
= By |Kp| sen(d, - & v |2Ky| sen(ac, - a;

This criterion is a positive definite function of fg and fy where

fa = &Ky sgn(de - ¢)2 (51)
51
fr = XKy sgn(acc - ac)2
since e, = (¢c _ ¢)AK¢
(52)

€y = (acc - ac)AKy

Ty and fy have the property that they vanish if and only if the errors

eg and ey, respectively, vanish. Thus the criterion is still one which
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is implicitly a positive definite function of the errors. Stated in
other words, the goal for system performance remains unchanged from
the case where JE(1/2)(A¢ ea2 + Ay erg) wvas the criterion as in

Section IT. The shape of the criterion surface (as a function of fq

and fy) is a time invariant inverted pyramid. See the sketch below.

A

Constant
J Contour

A

fa

Criterion Surface

An additional relationship is:

2

7= -

-Ay‘? sgn AK,° sgn(ag, - 8c)? (53)

sen 2K sgn(fe - $)°

This shows that J is either always decreasing at a finite rate towards its
lower bound, zero, or that J is zero. Thus if AK¢ and AKy are finite,

J will reach zero in a finite time interval. Since fy and f, vanish

when J = O, and the errors e, and ey, vanish with f5 and f, we are

assured that the errors are asymptotically stable and that they will

converge to zero values.
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When controlled element mismatch and/or disturbance inputs are
acting, the stability analysis for this simplified system is considerably
complicated. This is even more so than in the case treated in
Section IT. Further conclusions with respect to the stability of this

simplified system must be obtained experimentally.

The above discussion treats the exact behavior of derivatives
of the sgn(*) function when (+) = O rather cavalierly. This detail is
unimportant as a practical matter, however, because the sgn(‘)
function we have used is hardly an accurate model of an actual
electronic switch or relay in the close vicinity of zeros of the
switching function in any case. What is important is that the above
equations do accurately describe the physical realization of the gain

adjustment law outside the region of non-ideal equipment effects.

Some other observations are in order. It seems clear that the
adaptive gains may tend to have a limit cycle about point MKy = XKy = 0,
and may tend to chatter about the lines LKy = 0 and XKy = 0. The
frequency and amplitude would be expected to be respectively infinite
and zero,in theory. Actually, small lags introduced by non-ideal
effects in equipment, the filters necessary in realization, and
imperfect knowledge of the controlled element equations may produce a
high but finite frequency limit cycle or chatter mode of low amplitude.
This mode of behavior may or may not be unacceptable if it appears.

It did not appear prominently in the simulation records to be discussed

next.
SIMULATION RESULTS

The digital adjustment law was implemented in the aileron channel
only,for the purpose of demonstrating its capabilities. A number of
experiments were carried out and the key results will fol Low some brief

prefatory remarks.

Unfortunately, the simulation did not correspond precisely with

the theoretical development just given because we did not have enough




analog equipment available. Our objective was to show the feasibility

of the concept rather than to evolve a final form for its implementation,

and, with this in mind, certain shortcuts were taken.

First of all Eq 44 was used as the mechanizational basis rather
than Bq 47 which provides the practical simplification of the system.
So the multiplication, which is the function to be supplanted by the
scheme, actually remained in the simulation. The output of the
multiplier, ea(aea/8K¢), was processed by a three state relay to yield
the pot rate signal K¢. The sketch below shows the form of the simu-
lation setup for the comparison between the analog adjustment logic and

digital adjustment logic.

Analo
g Kg (o)
|l|' IC
deq Selector <L Ké
;g | II Switch
} A

€a 4,7 _J{e

Digital

The analog scheme appears the simpler one here only because of the

mechanization shortcut Just described.

The three state relay used to approximate the signum function had
deadzone width 2¢ and amplitude levels tA. These parameters were set
to values for which the behavior of the two adjustment laws is
comparable. There may be more optimum values but for our purposes
this was the approach adopted. It turned out that performance was not
at all sensitive to € and A over a large range of values. This some-
what surprising result was a fortuitous one. It should be pointed

out as an aside, that, although only a symmetrical relay function was
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considered, there may well be practical advantages to a non-symmetrical

one in an actual application.

Figure 13 shows a comparison between the two mechanizations at
flight condition 810 when a square wave roll command forces the system.
The rudder path gain, Ky, is constant at its correct value. In part A
of the figure the analog adaptive scheme is employed and in part B
the digital adaptive logic scheme is used. The initial offsets are the
same in each case. Notice that when the square wave first changes
sign the system receives a double amplitude step and a large K¢
adjustment is made by the analog adjustment logic. The digital
adaptive logic at this same point only adjusts the gain the same amount
that it did when the input started, impressing a single amplitude
step upon the system. Thus the gain adjustment is sensitive to command
level for the analog scheme and is insensitive for the digital logic

scheme. This bears out our expectations in the light of Eq 43 and 47.

In both cases shown in Fig. 13, adjustment is satisfactory. While
convergence may appear to be slow the adaptive gains are appropriate
for the real time execution of the mission. The gain might, of course,
be made much higher at this flight condition in agreement with the

analytical proof of stability.

Figure 14 shows the behavior of the system with the digital
adjustment logic during 170 seconds of the mission. The approximately
Gaussian roll angle command is used here. The rudder loop gain is
being set by the analog adjustment scheme as it was previously.
Overplotted on the K$ trace is a dotted curve which represents,
according to the surveys (Appendix A), the optimum handling qualities
gain trajectory. The actual gain is even closer to the ideal gain than
it was in the original scheme (see Fig. 9). The error, ey, is also
smaller. So, it turns out, the digital adjustment scheme is not only
simpler but it seems to give better overall performance, at least in

this ideal case of no disturbance input. The simple digital gain
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adjustment logic is indeed an attractive way to mechanize the adaptive
control function technique.

In summary, the following items have been discussed in this

section.

® An attractively simple mechanization is possible.
® Tt is flexible as well as simple,

® Desirable stability properties exist in the
ideal case.

® Simulation shows that overall performance may
well be enhanced by digital gain adjustment logic.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

The research reported herein has led to a general procedure for
constructing adaptive control systems appropriate for linear, multi-
control point controlled elements. The adaptive control function
technique, as it is called, can be mechanized with a very modest
amount of equipment. The system is especially remarkable in this
respect when applied to multi-control point problems. We have shown
how modifications, necessary for mechanizing the system with real
physical devices, should be incorporated into the design. Aspects of
these modifications which allow us to further reduce system complexity
have been discussed. An alternative adaptive gain adjustment law has
been developed which renders the adaptive gain adjustments independent
of the input level, and to some extent, further simplifies the system
mechanization. The adaptive gain adjustment responses have been proven

to be stable under certain ideal conditions.

Simulation of an adaptive lateral stability augmentation system for
a hypothetical manned, lifting-body,entry vehicle has demonstrated
application of the adaptive control function technigue to a difficult
flight control problem. The adaptive control function system was
shown to be capable of providing a speed of adaptation well in excess
of that required for this application. The system was also shown to

operate properly in the face of disturbance inputs.

Two recommendations for further research and application are as
follows. Additional theoretical research on the stability of adaptive
control function systems might succeed in treating "non-ideal" cases
vherein there is controlled element~-controlled element model
mismatch and/or there are disturbance inputs acting. This possibility

should be pursued. The second recommendation is that the adaptive




control function technique be put to an actual flight test. In view
of the modest equipment requirement for these adaptive systems, it
appears feasible to perform such a test at low cost by utilizing an
existing variable stability aircraft having genersl purpose analog

computation equipment aboard.
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APPENDIX A

HYPOTHETICAL, MANNED, LIFTING-BODY ENTRY VEHICIE;
BASTC DATA AND SYSTEMS SURVEYS

In this Appendix, we summarize the basic vehicle data, for lateral
handling qualities considerations, at six flight conditions which
encompass the critical phase of the entry trajectory. Next, a handling
qualities assessment is made to identify the particular problems
characteristic of the unaugmented vehicle. This leads in a natural
way to the evolution of a stability augmentation system (SAS). Before
delving into the details of the SAS, however, a review of the multiloop
analysis procedure, necessary for analyzing this problem efficiently,
is accomplished. Following this, a basic SAS configuration is
evolved by considering, on a competitive basis, the various ways in
which the handling qualities problems may be eliminated by SAS design.
Finally, the problem constraints which require that certain SAS

parameters be adaptive will be stated.
BASIC DATA

The lateral transfer functions used herein are based on the following

Laplace transformed aircraft equations of motion for body-fixed axes,

— -sWy-g cos 64 sUy-g sin 9; / e

s - Y, B Ys

VTO VTO
‘ [ 1 ' P !
| Ly s(s - Ly) - Ly { g? = {Lg p 8 (a-1)
|
- Vg -sNy, (s - M) r Ny
o | / N/

where & can be either 3,5 or &
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Additional variables are given by:

o

\j‘!:

ay

a_;_:ay+le—lzi)

Numerical values of reference dimensions, inertias, dimensionless

p+ r tan 64

r

cos 90

VTO(YVB + Y33) = VTOé - Wop + Uor - g cos 809

(A-2)

(A-3)

(A-b)

(A-5)

stability derivatives and transfer function factors for all flight

conditions considered in the system surveys are summarized in the

following tables.

TABLE A-t

REFERENCE DIMENSIONS AND INERTIAS

(Ref.18)

Parameter

Units

Flight Condition (Time in seconds)

630 725 810 840 | 850 | 865
S 7 £1° 150. same
b ft 15. same
Uo ft/sec 6070 3250 1750 1150 [ 940 | €87
Wo ft/sec 2500 2320 419 331 | 342 | 13k
m slugs 200 same
Tx 102 slug-ft2 1.0 same
I, 102 slug-ft° 5.0 same
Ixz 103 slug-ft2 0.3 same
8o deg 3l 33 -8 -2 -7 | -17
%o deg 30 35.5 13.5 16| 20 11
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TABLE A-2

DIMENSIONLESS STABILITY DERIVATIVES

(Ref.18)

Flight Condition (Time in seconds)

Parameter 530 725 810 8Lo 850 865
Cy -0.6 -0.8 -0.8 -1.1 -1.2 -0.9
B
same
Cyp 0.0 m
Cyr 0.0 same
C 0.0 same
I3
a
Cy 0.0 0.0 0.04 0.04 0.0k 0.04
&
r
ClB -0.07 -0.09 -0.04 -0.17 -0.20 -0.20
Clp - -0.07 -0.09 -0.12 -0.20 -0.20 -0.20
C1, 0.2 same
C16 -0.008 -0.008 -0.012 -0.023 -0.030 -0,034
a
ClS 0.0 0.0 0.007 0.008 -0.02 -0.03
r
CnB 0.0k 0.0k -0.02 0.12 0.18 0.22
Cnp 0.1 same
Cn,. -0.2 -0.2 -0.3 -0.5 -0.6 -0.6
Cna 0.0 0.0 ~0.002 0.002 -0.002 -0.022
a
Cnar 0.0 0.0 -0.019 | -0.020 -0.0k -0.06




A Ny - 961 - chUL - ¢gLooo* G01000° g-08s hmz
oL*L = ! 90°1L - LG - 7Ly - e - G0t - 5098 mmz
cog - | 066 - gog* - | ongor - 0510 - .wwmoo. - |-00S N
9220° 6g20* 0g20* 9ee0* . m@»mow | 4,0wwmof |-098 wz |
e 9'T1 | oL*L _M...m - mﬁ:. Lfle 5098 m.uz
| 98'8 g olL- 6L¢ wwhm ¢2900* - ggLo0° - 5098 nmq
%6 - | G L- g al- w ¢L°G - ggre - |mm.ﬁ)-{ 5098 mmq
79 266" 166" " = LoL* 260" |-0°8 ! -
- mwm. " ooL* - gL9* - Log* - oéwo* - e lo® - |- 098 wq
- ¢ 6n- w L*16- g°06- e Lli- 0*Ge- 2°¢l- 5098 mq
¢6300° ommoo. 01900° wmmmm“. g-Ol ¥ §9°% = |5 0L ¥ 08" - |-098 pmw
0 0 0 0 0 0 098 mm»
Lt - 6gLc - gLt - | GL9o° - LgLo* - 9hGo0* - |09 | Ap
s | o og ' oy | Gzl 0£9 6370 | zenoumeIn

(spuooss UT SWTL) UOTATPUO) 1USTIA

PN

SHAILVATERA ALITIEVLS TVNOISNHWIQ

¢-V TIVL

T



2

TABIE A-4

EXACT TRANSFER FUNCTION FACTORS:
CHARACTERTISTIC AND ATLERON NUMERATOR

Parameter

Flight Condition (Time in seconds)

630 725 810 8L0 850 865
A= s+ 1/Ts) (s + 1/TR) (s2 + 24guys + ag)
M
or
g2 + 2C-|(.L>15 + (L)?
/75 (¢1) | (.49) (.51) (-.16) L0679 L0611 L0843
1/Tg (@) | (.0061) | (.0135) (.165) .285 . 365 . 360
ta .0035 .0084 A7 .070 .066 .062
g 2.69 3.89 1.20 5.7t 6.49 L.21
7 ,
Np, = Ap (52 + 2bqfps + a:%)
N, g’
or
(s + 1/Tq)1) (s +1/Tq,)
Ag -1.62 -2.57 5.06 -12.6 -1k -8.80
to (1/T<p1) .006 .0tk (-.936) .076 .076 .059
Vo (1/Tq>2) 1.3% 1.60 (1.11) 3.06 k.07 b.13
Nga = Ay (s + 1/Tr1) (s2 + 26,8 + aﬁ)
w
or
(s + 1/Tr0 (s + 7/Tr2)
Ay -.09%5 -.137 - b7k -.5h7 -1.06 -1.70
1/Tr .00763 | .0116 .076 .0950 .09%3 .230
tr (0 /Tre) .0093 .02 (=1.%6) .081 .06k .065
oy (1/Tr5) 5.57 .66 (1.89) 8.66 9.2k k.27




RUDDER NUMERATOR FACTORS

TABLE A-U4 (Continued)

Parameter

Flight Condition {(Time in seconds)

630 | 725 | 810 840 850 865
Ngr = Ay (s + 1/Tr) @2 + Ecrm?s + w%)
Ay 0 0 |-1.43 -1.96 b3 -3.64
1/Tp L0761 .0950 .0933 .2%1
Er .03k 073 067 .065
op 2.27 4.59 6.39 3.65
dy' 2

N5, = Aay' (s + 1/Ty'” (s + 1/Ty'2) @ + 2§yvmy's + qu
Agy' 0 0 -.00891 -.315 | -10.9 -10.7
/Ty -.0206 -.0162 -.2k2 -7
/Ty, 131 .388 . 350 k55
Cy! -1 -.058 .05k .031
Wy 16k, k0.3 £.94 5,06

- a 1 2 2
N5r - Aay" (S + 1/Ty”1) (S + 1/Ty”2) (s + 2§ynwyns + wyn)
M
or
(s + 1/Ty%) (s + 1/Tyﬂ)
Agy™ 0 0 .705 665 -8.68 -8.88
1/Tyn -.0208 -.0163 -.269 -.12k
1

1/Tyn 132 400 .380 L2
£y (1/Ty'5') (-18.0) | (-25.8) .05 .028
wy”(1/Tyﬂ) (18.6) | (28.6) 7.10 5.30

13
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RUDDER NUMERATOR AND COUPLING NUMERATOR FACTORS

TABIE A-L (Concluded)

Parameter

Flieht Conditions (Time in seconds)

630 725 810 8L0 850 865
Mo, = Ap (2 + 2ggepe + 05)
Av e
or
(s + 1/Tpy) (8 + 1/Tpp)
0 0 2.68 4, 21 -10.2 =775
. 61) 064 057
to (1/%py) (-3.35) | (5. :
.81 5.51
Cp (‘/TCPQ) (3.31) (5.70) 6
Pay' '
Naagr =B (s + 2fpops * ag)
B 0 0 4,97 12.9 11k, 42.8
t -.0073 -.035 -.00%5 -.017
B
. 17. 8.08 h.ho
0 13.6 7.5 |
Q) 1" 2
Nogby = D (2 + 2tpops +.05)
M
or
(s + 1/T])1) (s + 1/TD2)
D 0 0 .71 -.645 87.6 3%.3
- -.006 -.021
tp (1/Tpy) -2k | (-65.8) 5
22 .01
op (1/Tn,) 35.7 (93.1) 9 5
¢
Naagrr =¢C (s + 1/T¢)
c 0 0 8.5 27.1 52.8 18.9
1/Te -0636 135 .158 .0685




LATERAL HANDLING QUALITIES DEFICIENCIES

In this subsection, we examine critically the lateral handling
qualities of the unaugmented vehicle. This is a necessary prelude to

intelligent design of the SAS.
Roll Damping

The low frequency roots of the characteristic equation couple,
resulting in the so called "lateral phugoid"* at flight condictions
630, 725 and 810. See Table A-4. The lateral phugoid is the result
of low roll damping and large effective dihedral. Because of its low
frequency this mode is not considered to be particularly troublesome.
It is effectively the same as two roots at the origin insofar as its
effect in the crossover region on the clogsed-loop control of the

vehicle is concerned.

At flight conditions 840, 850 and 865 the low frequency roots are
typical for stable spiral and roll subsidence modes. However, the roll

damping is quite low.

A roll damper will clearly be a necessary part of the SAS. For
this purpose we will use a $ to By feedback. The convention for this
reads § —=08,. ¢ will be assumed obtainable from a vertical gyro

operating in the free mode during entry. Derived rate will be used.

ay/wy Effects

(wp/wg)? is summarized in the following table.

*The handling qualities implications of the lateral phugeid mode
effects are treated in Ref. 19.

(£
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TABLE A-5

aﬁ/ah EFFECTS —UNAUGMENTED AIRCRAFT

FLT. COND. (%/a)d)2 COMMENTS
630 0.245 Too small
s 0.169 Very small
810 -0.850 N.G., Roll |
reversal
8L0 0.325 Too small
850 0.394 Too small 1
865 0.940 ru_-mOkaywﬂ

When the dutch roll is very lightly damped, as here, Ref. 17
indicates as desirable 1.0 > (uﬁ/aﬁ)g > 0.5 in order to avoid roll rate
reversals. Only the 865 flight condition meets this criterion. Even
at 865 the situation is not entirely acceptable because the combination
of very low dutch roll damping and very small Wp—wy separation will
mean that a roll damping closure will not produce sufficient dutech roll
damping. This is acceptable for aileron inputs because of the small
dutch roll modal response coefficients for the dutch roll mode but will
probably not be adequate for gust (6g) because the modal response coef-
ficients for the dutech roll mode then tend to be larger.

An additional means for increasing dutch roll damping must be found.
This might be crossfeed, or feedback of yaw rate, sideslip, or lateral
acceleration to the rudder. Of the other flight conditions, only in
the case of 810, 840 and 850 can.aﬁ/aﬁ be changed by means other than
the roll damper, e.g., by feeding back sideslip angle to rudder, because

there is no rudder effectiveness at flight conditions 630 and T25.

Other wy/ay related problems also exist. Notice that the dutch
roll frequency or stiffness is low at flight condition 810. See

Table A-4. This results from negative yawing moment due to sideslip.




For good handling qualities, the dutch roll frequency should be 3.0 to

5.0 rad/sec. The requirement to stiffen the dutch roll practically can
only be met by feedback to rudder.

Still another problem exists at flight condition 810. This is the
so-called roll reversal indicated by the negative (dﬁ/ﬁﬁ)g ratio in
Table A-5. This too, is the result of negative yawing moment due to
sideslip. DPossible fixes for this problem are aileron-to-rudder

crossfeed or feedback of lateral acceleration or sideslip to rudder.

MULTILOOP ANALYSIS

Lateral aircraft dynamics pose a two control point problem, i.e.,
both rudder and aileron control inputs are possible. To develop maximum
insight to this moderately complex control problem we must use the most
efficient analytical tools available. In this case, the multiloop
analysis technique reported in Ref. 9 is particularly appropriate.
Without resorting to proofs or consideration of the general problem,
results which are useful for the problem at hand are summarized below

and related to the aircraft equations of motion.

Our objective is to analyze the dynamic characteristics of the
closed-loop lateral control system in Fig. A-1. The inputs to the
unagumented aircraft, A/C, are denoted by 85 (actual aileron surface
deflection) and 8, (actual rudder surface deflection). The outputs
which concern us are the roll angle, ¢, and some other motion quantity
such as yaw rate, r, or lateral acceleration, a&, which we shall denote

in general by q.

[



A/C
Sr q

-Yq f———————Jd

Figure A-1. Lateral Aircraft Closed-Loop Control System

The controllers, G® and Gq} include the servo transfer functions .
and compensation. The controllers include the human pilot as well as

electromechanical functions of the SAS.

The first step is to develop the open-loop transfer function from
Og==0, with the q—=0,. loop closed, from first principles of servo-

analysis. In Fig. A-2, A is the characteristic polynomial of the Laplace

8a Ng’ d’
P a n
JaY
@
- N8r
O )
N§,
A
S q q
e 'Yh r — DBEL HEI“"“
A .

Figure A-2. Effect of Inner Loop Closure on Aircraft Dynamics
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transformed aircraft equations of motion. Nga, for example, is a
numerator polynomial which, together with A in Nga/A forms the transfer
function for the unaugmented aircraft from 5, to ¢. Nga can be obtained
from the Laplace transformed aircraft equations of motion, say, by

Cramer's rule.

The transfer function for & —+¢ with the g—3, loop closed is:

¢ ¢ q ¢
( ) A N@a ) Nga . N6a -GqA Ngr
Sg - q
A +
q—a—&r A A A quar A

¢ ¢ 4 q P
Ng, + Go{Ng N5, - Vg Np..)/A (16)
= A—
q
A+ Gqﬂar
At this point let us introduce the coupling numerator:
No 5, = (g Ng. - N Np )/A A-T)

A is always an exact factor of the numerator polynomial on the LHS of
Eq A-T7. Therefore N5a5r is a polynomial, and is very often of lower
order than any of its constituent numerators. It can be shown that
the coupling numerators can also be obtained by a method analogous to
Cramer's rule. That is, Ng;g% can be obtained from the Laplace
transformed aircraft equations of motion by substituting the Sa
control effectiveness column into the © column of the characteristic
matrix and the &, control effectiveness column into the g column of
the characteristic matrix, and then computing the determinant of the
result. Several identities among coupling numerators are also of

importance.

9
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Axd] q7 Ay Q1 43 Ak

N = -N = N = N A-8
5105 510 N 555 (A-8)
If q.l = E a‘p(s)XpJ
D
then Qedy e
ooy = 2 ap(S)Nsig? (2-9)
D
ey U I
1 N =0 and I} =0 -

Consider the last two identities, Eq A-6 and A-7 and identify
1
Nga as:

Q! P P q
Nog = Nog + Gollogdy (a-11)

Clearly then, the numerator, Nga’ may be modified only by feeding some
other motion quantity than ¢ back to some other control point than 84
(beééﬁse otherwise the coupling numerator will vanish). This statement

is true in general and can be extended to the n-control point problem.

The closed-loop expression for the ¢Q,—»¢ transfer function is

P P q P!
G®[N6a + YQNSaSr]

(ﬁ) ) - T (a-12)
Pclpms, O+ GNE + Go [N%?a + YqNé?a%r] AT+ GRS,
q_---—Sr
' 4 -
where Al = A+ Gl (A-13)

The numerators of the aircraft as experienced by the pilot (i.e.,

with respect to control stick and pedal deflections in distinction to




control surface deflection) may be modified by control crossfeed.
Aileron-to rudder crossfeed effects are sumarized below. Pedal

deflections are denoted by 61'.. Stick deflections and aileron deflections

are equivalent, assuming servodynamics are negligible.

¢ - 3a % ¢

Figure A-3. Effect of Aileron-to-Rudder Crossfeed

¢ - Sa ¢

Figure A-4. Equivalent System to Figure A-3
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The modified numerators are

Néa)* - Néa) * chNér) (A-14)

so that, for example

g (v + a® 2 )
) a a afr
5 = —= = = 5 (A-15)
alo=da A" A+ oE, + Gp(WY + G &)
q—»Sr

Note that a single crossfeed does not affect the coupling numerator:

g Paq
5,0

N5a5r = N (A-16)

a’r

The above development illustrates the fact that the effects of
aileron to rudder crossfeed may be included in the previous analytical
framework merely by replacing the unstarred d5; numerators by starred
numerators and choosing Y. appropriate to the crossfeed and the rudder

servodynamics.

For compactness it is helpful to use a notation that will avoid the

repeated use of the Laplace variable, s. For this purpose, we define:

I

(1/T)
li] = [sg + 2(8)ws + of
{k}

(s + 1/T)

Root locus gain

s/
Superscripts of primes and/or asterisks denote the number of loop
closures which have modified the 1/T, { or ® of the system transfer

function factors.




SYSTEMS SURVEYS
Effect of Roll Damper at Flight Conditions 630 and 725

Because of the large Wp=—00g separation, it is an easy matter to
obtain good dutch roll damping. However, most likely, roll rate
reversals and fair sized (but not lightly damped) sideslip motions will

have to be tolerated because of limited aileron control effectiveness

available and the absence of rudder control effectiveness.

TABLE A-6

W/ Wy EFFECTS —WITH ROLL DAMPER
d

S T SR
FLT. COND. ' w/ogt L (agfeg)® @y
L . o L ?
630 0.688 @ 0.473 ; 1.92
o . i ) - |
725 f 0.492 ! 0.2k 3,25
e [ e J. IO USSR

*Prime denotes one loop closed, in this case mézgéa

This will be especially true at flight condition 725 because of the
very large wm—-aé separation (see preceding table). While still larger
gains could be used to advantage theoretically, they may well cause
control saturation and/or tend to cause larger sideslip angles because

of reduction in dutch roll stiffness that must accompany higher gains.

The pilot can close a @-a—&a loop to achieve approximately 1.0 rad/sec
bandwidth using only a modest amount of lead, i.e., (s + 1/T)= (s + 2.0).
Lead is not required to stabilize the system. Additional pilot lead

(TL max = 5.0) can be used to obtain increased system bandwidth.

It seems clear that under emergency conditions with the roll damper
failed, the pilot's lead, i.e., (s + 0.2) is sufficient to obtain in
excess of 1.0 rad/sec bandwidth. This calculation was not performed,

however.
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Competing SAS Systems for Flight Conditions 810, 840, 850 and 865

In this subsection, the objective is to evaluate candidate SAS
configurations on a competitive basis. Root locus sketches will be
utilized for evaluating the suitability of each candidate at the flight
conditions where it is most likely to be a poor choice. This technigue
enables us to rapidly reduce the list of candidates to the one or two

configurations that will most likely work out well.

The root locus sketches can be constructed using very simple
approximations for the SAS transfer functions. Here, servodynamics
and pilot reaction time delay effects will be neglected. For example,
Gp in Figure 1 consists of two parts. One represents the ¢—=5, loop

closure by the pilot and the other, the @-—»Sa SAS roll damper closure.
%a
Gp= =Yp+Yps (A-17)
The pilot describing function is taken to have the form:

Yo = %‘- = {KP} (1/Ty,) (A-18)

The roll damper form is:

(o4

a,

g = T - {Kg) (A-19)

For Gq (q is some motion quantity such as yaw rate, r), the only loop

closures are those of the SAS so that:

q=71 (A-20)

We are now ready to consider the candidates.




Consider the effect of the closure of ¢-»=&y5 by the pilot with or

without a roll damper.

810 because of the so-called roll reversal, i.e.,c@% is negative.

The critical situation occurs at flight condition

The

root locus sketch below shows a rapidly divergent closed-loop root

which will always result for reasonable values of gain of either sign.

Pilot + Roll Damper Closure at Flight Condition 810

Aircraft
?gg _ {-5.06}(-0.936)(1.11)
A [-0.16 ] [0.17
0.1651 [1.20

Pilot + Roll Damper

Crossfeed can be used to remedy the roll reversal problem.

8]
Gw = ?

a

= (K} (1/7p)

Since

the 5 numerator is the one to change, the crossfeed must be &g5—=0.

p* P
Ngg = N5, + YcfN5,.

2 (A-21)

Effect of Crossfeed at Flight Condition 810

(Closed - loop poles
¢+
are zeros of N{ )
a

Open-Loop Function
¢

N@r
= Yer ﬁa—
2.0j O,
——H—-wy=1.20
“W; Crossfeed
x———
936 3.35 ch=={ch)

=33l =LAl
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While the crossfeed fixes up the roll reversal, it does not provide
any stiffening of the dutch roll which is definitely required. To
appreciate this, consider what happens when the roll damper loop is
closed. (wé/aa)g must be enough less than unity so that adequate
damping is achieved, but should be greater than 0.5. This leads to

the situation sketched below.

Effect of Roll Damper at Flight Condition 810
with &4-8,. Crossfeed Acting

—2.0j Aircraft (dg—=d,. Acting)
*
. Ccp
| wq =120 W, apo)|s
N A -0.16 |[0.17
m— Wy 0.165]1.20

Roll Damper

By .
Y{P = E = {Kq)}

On the other hand, (a%/uﬁ)g might be more nearly equal to unity
eliminating the stiffness problem to some extent, but at the expense

of damping.

Consideration must also be given to another potential problem
created by this fix. At flight condition 865 (a@/aﬁ)g is nearly unity.
This meansg that if a constant gain crossfeed is used an unfavorable
&$/aﬁ would result. (A closed-lcop root is in the RHP.) The alternative
ig to have an adaptive crossfeed gain supplied electromechanically or
by the pilot. Neither solution is really attractive in view of the
marginal performance improvement at flight condition 810. Root locus
sketches illustrating this aspect of the problem.(when constant

crossfeed gain is used) are shown below.




Effect of Crossfeed at Flight Condition 865

Open-Loop Function

g
=Y. . —=
cf Ncp
(Closed - loop poles —6.0j 8,
¢ ¢*) 5.5l
are zeros o NSO wd Crossfeed
wrzdl3H T wdT 4.21
¢~ 12 N4 0j Y.r = {Kerl
Effect of Roll Damper at Flight Condition 865
with &0, Crossfeed Acting
<u$ Aircraft (5,—=8, Acting)
=4.2| — v ¢
wqg - - h 401 - % % [cp]
. 'X‘
Ng; {ag}(0) |ay,

N (o.o8h5)(o.56o)[o.o62|
L. 21

—120j

Roll Damper

The next candidate fix is to tilt the spin axis of the vertical

reference forward through angle Gp. This means that the roll damper

loop feeds back a new motion quantity, 17, where assuming r = ]

n < $ cos Bp + r sin Oy (A-22)

Ui
N, = cos O Ng)a + sin O Ng (A-23)
a

If we develop this numerator at flight condition 810 it is clear that

this fix, too, solves the roll reversal problem.
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Effect of Sensor Tilt on Nn at Flight Condition 810

88.

Open-Loop Function

i sin ©m Nx
(Closed - loop poles 2.0j _ T _fg
are zeros of Ngo) cos B Népa

——1 — wq =120

—=O— —H— O
-1.89 -LlI 936 1.46

However, this fix also fails to stiffen the dutch roll. See the

roll damper closure below.

Effect of Roll Damper at Flight Condition 810
with Tilted Sensor

Aircraft

£
1 ’1]
Vo, {An}(o)[a)n
AT [_0.16 |o.17
0.165] 1.20

Roll Damper

68.
Ty = i {Kn}

Traditionally, feedback of lateral acceleration to rudder has been
the appropriate way to achieve dutch roll stiffening. It turns out that
this aircraft is amenable to this approach. But before getting to the
final surveys which have been done in some detail, we must consider yaw

rate feedback to rudder as a candidate inner-loop closure for completeness.




It is most desirable to use washed-out yaw rate to eliminate the need
for a yaw rate command in order to execute turns. In the typical

case for which this is useful, cbr/md is less than unity so that dutch
roll damping is increased by the r—+8, feedback. At flight condition
810 the entry glider does not conform in either respect to the above
situation. a)r/a)d is greater than one, and the zeros of Nga are on the
positive and negative portions of the real axis. The resulting closures

are unsatisfactory because a low frequency divergence remains.
This is developed in the following sketches.
Effect of r—»—Sr Closure
on A' at Flight Condition 810

NS mgr

(Closed - loop poles Open-Loop Function

. are poles of X) g (o1 131 (0.076 )l 031+|
z1.20 or _ 1.43}1(0.0761)12.2
“d rx I -0.16 I o.17l
l 0.165 [1 .20
Yaw Damper with Washout
L 5 0)
Two Y. = - [Kr} T/ Tg
Effect of r-»&r Closure
on Nép at Flight Condition 810
a
Ng)a = Nga + YI,Népagr
(Closed -loop poles
are zeros of Nga) —1.0j Open-Loop Function
CP r
L oy {8.53(0.0636)
Tws r o = I 155,061 (20.9%6) (1.11)

T -

Yaw Damper with Washout

$2  Two Te, Y. = K 5 %3’0
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Effect of Roll Damper at Flight Condition 810
with Washed-Out r—s~5,. Acting

Augmented Aircraft

xP

_— ba _ (A (0)(1/m0) (1/Tp; ) (1/T)

| 2 y
(1/Tg)(1/T1'q)(1/vao)[wé]

Roll Damper
-X wy (.
- —Hioj =%

]

Low Frequency

- é Divergence
-1 XK—O= .

If yaw rate feedback is to be useful here, it must be lag/lead

compensated. (Yaw rate commands will be necessary with this compensation.)

g at Flight Condition 810

a
(With Lag/Lead Compensation)

Effect of r—=8%, Closure on N

RS
(Closed - loop poles By~ Da T "Bg0p
’ .
are zeros of Ng’a) 1.Oj Open-Loop Function
P r
N

¥ 550y - {8.5)(0.0636)

Lag/Lead Compensated Yaw Damper

v, - (g G4

F{-5.06}(-0.936)(1.11)



Effect of r—s8, Closure on A' at Flight Condition 810
(With Lag/lead Compensation)

(Closed-loop poles | 39i
are poles of /)

—— w,=2.27

L — — wg=1.20

A= A+ YI.Ngr

Open-Loop Function

- 0.03k
6., _y {_1,43}(0.0761)[2.27 ]

va T {-o.16| [0.17
0.1651 [1.20

Lag/Lead Compensated Yaw Damper

Y, = (Ky) 97/%”1

Effect of Roll Damper at Flight Condition 810
(With Lag/Lead r-e-5, Acting)

Augnmented Aircraft

@ g (0)(1/my) [iﬂ
. (1/T1L)("/T§)(1/T§)|i§]

Roll Damper

T = {Ky)
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It turns out that the system can be stabilized and the actual
dutch roll can be stiffened. However, the lag of the compensation in
combination with the roll subsidence root presents a low frequency
apparent duteh roll mode to the pilot while the apparent roll subsidence
root is at infinity. A high gain Q¢—=0g pilot closure 1s needed to
suppress the apparent dutch roll mode adequately. This loop cannot
be closed at high gain because the actual dutch roll mode will tend

to become unstable due to the pilot reaction time delay effect.

Finally, we come to consider feedback of lateral acceleration to
rudder. First we must choose a location for the accelerometer. If the
location is chosen to be the center of percussion with respect to the
rudder, then the accelerometer instantaneously senses a quantity
proportional to sideslip angle. ©Sideslip angle is the desired feedback
quantity for stiffening the dutch roll, of course. It also turns out
that this feedback fixes up the roll reversal problem. The center of
percussion is a distance lxo(forward) of the center of gravity.
Reference 21 gives lXO as:

Y3
o = o g

(A-24)

The lateral acceleration measured at the center of percussion location
at flight condition 810 is denoted by ay. At flight condition 810,

1x, * 3.88 ft. However, at flight condition 865, 1x, = 0.95 ft

which means that the accelerometer is considerably forward of the center
of percussion at that condition, and the quantity sensed no longer
closely approximates sideslip angle. This is not necessarily a major
concern because at flight condition 865 duteh roll stiffening is
adequate. The real problem at flight condition 865 is lack of ==ty
separation and/or dutch roll damping. To remedy this we need only
perturb the accelerometer location slightly to obtain adequate W=y

separation at flight condition 865 and adequate dutch roll stiffening




at flight condition 810. A location, 1y = 3.38 ft forward of the
center of gravity, is suitable. The lateral acceleration at this new

"

location is ay

To more keenly appreciate the results of changed accelerometer
location on the various dutch roll related factors of the transfer
functions, we have constructed Table A-7 below. When interpreting the
entries in this table we must keep their involvement in the expressions
for Nga and A' in mind in order to assess the effects of the a§ )—-ar
feedback.

g, - 6+ va (2 (a-25)
po= sy (Ongl) (a-26)
TABLE A-7

SUMMARY OF ACCELERCMETER LOCATION EFFECTS UPON DUTCH ROLL
RELATED TRANSFER FUNCTION FACTORS AT FLIGHT CONDITIONS 810 AND 865

FLT. ® . Q a} al ot
COND . N3, N%agy Nsagﬁ A Ng¥. Ney,

(=0.936) | [~0.021 ~0.00753 0.17 (=18.0) | | —0.11]

810 (1.11) [55.7 13 .6 1.20 ( 18.6) 164. ]
0.059 0.021 —0.017 0.062 0.028 0.031
865 [h.15 ] [ 5.01] [ Loh2 ] [4.21 ] [5.30 5.06

The numbers show that

)—>-6 feedback can fix the reversal. (The
roots of Ng tend toward those of N§_ %y ) as Ko( )

&y

® The ay

is 1ncreased.)
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is possible.

® CGreater wp—wy separation at flight condition 865

(Same reason as above plus roots of

A' tend toward those of Ngi as Ka; is increased.)

The new accelerometer location does not compromise

the dutch roll stiffening at flight condition 810.

In order to also augment dutch roll damping (particularly at flight

condition 865) we will use lead/lag compensation in the ay==dy path.
The following sketches show the development of Ngé and A' at flight
conditions 810 and 865 using this feedback.

The sketches show that, indeed, the reversal, stiffness and dutch

roll damping problems are solved for the critical flight conditions by

the compensated ay -5, feedback.

Closures of the roll damping loop

and ultimately, of the Q-+, loop through the pilot bear this out.

(Closed - loop poles are

zeros of Ngl)
a

[072]
a4
(6.09)
- —% ) |
-15 -5

(Closed -loop poles
are poles of A)

1
Development of Nga and A' at Flight Condition 865




]
Development of Nga and A' at Flight Condition 810

(Closed - loop poles
are zeros of Ng")
a

28

(2.16)

-15

936

35.7

(Closed -1oop poles are

poles of A)

r————"
| l |
| |
—10j | Jl

[ 7 ] /— ——

7.63] “a) -
-186 _//
i5 °
279 '8

The open-loop functions in each of the above sketches are,

Open-Loop Function for N

1

. ¥Eo5Y
= Y
R

a

Open-Loop Function for A!

The compensation for the lateral acceleration loop in each of the

above sketches is (s + 1.5)/(s + 15.0). The loop gain, (-Kag)dB’ is

-10.0.

95



96

Considerations of Controllability After a Single Failure

Consider pilot controllability at flight conditions 630 and 725
following a roll damper failure. The pilot will be able to control the
double integrator-like vehicle in emergency operation, but will not have

a high opinion of the handling qualities.

Much the same will be true at flight conditions 810 through 865
in the event of a roll damper failure. However, the dutch roll will be
better damped by the a§->6r inner loop and the roll subsidence
frequency will have increased somewhat (but by no means enough). Both
these factors will improve the handling qualities relative to situation
above.

11"

ay-a—Sr failure. At flight condition 810 this failure poses a
critical pilot controllability problem when the roll damper is engaged
because (you will recall) a&—a—Sr is required for stability. The

question is: can the pilot provide a substitute for the failed loop?
Likely candidates are:

Og Ezi6%>5r crossfeed. This is easily accomplished

for emergency operation.

. 6 — . . ]
ay-55i5%> T (ayp lateral acceleration at the pilot's
head). The pilot's head was estimated to be 5.88 ft

forward of the c.g.

The first remedial action is easily within the pilot's capability, but,
as we have seen previously, alleron-to-rudder crossfeed is not too
effective a fix at flight condition 810 because the dutch roll frequency
is low and requires stiffening which is not supplied by this fix. It

is shown in Ref. 16 that the second remedial action is ineffective for
stabilizing the dutch roll because of the combined effects of the pilot
reaction time delay and lack of uﬁy—a%_separation. Also, the fairly
rapid divergence (-0.808 > 1/T > 0.936) that results when ay ==y

fails does not allow the pilot sufficient time to assess the problem




and then adapt. This indicates that the a}—-—&r inner loop should
most likely be fail operational (triply reduntant). Dual redundancy
(with hardover monitors) might be sufficient if the pilot switched
systems in an emergency without first trying to assess the source of

the failure.

The roll damping loop need only be a single loop because the pilot

can serve as an adequate backup.

Reliebllity and Equipment Count Considerations

P-md, r—a-5,. and ag,-.ar can produce a system that will always

be controllable after a single failure (rudder servo must be redundant).

However, system dynamic performance after a aij-wdy failure would be
inferior to the system using fail operational a&-;—%r in place of
r-=5,. and a&——-Sr single loops. Igquipment counts are nearly the same
(see Appendix F of Ref. 22).

Dual redundant a&—-—&r shows an equipment count advantage, but
probably requires too much of the pilot. The requirements to achieve
system dynamic performance obJjectives for this vehicle provide nearly
all the design constraints; therefore, the reliability/cost tradeoff

does not enter the picture.
Detalled Analysis of Selected System

Detailed numerical analysis of the lead/lag compensated a§-§zgr6r,
@'§K§"5a: @-izisera system has been carried out. In addition to the
compensation considered in the above surveys, we have included aileron
and rudder servodynamics

{2
Y, =1 ——% (a-27)

as rs - (2

and a conservative estimate of the pilot's reaction time delay,

Te = 0.36 sec, when no pilot lead is required and T = 0.51 sec when
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near maximum pilot lead is required. See Ref. 23. The form of the

pilot describing function used in analysis is

(s -2
Yp = —Kp er:féégi% (s + 1/TL) (A-28)

The time delay here is approximated by a first-order over first-order
Pade representation. The constituent transfer functions of G@ and Ga;

become

Gp = Yp¥as + Yglag s (A-29)

]

Gay = Yol Yrg (A-30)

The results of the closed-loop analyses are contained in the

following series of tables.

Dynamic performance at all flight conditions is as expected from

the preceding surveys.

TABLE A-8

CONTROLLER FORMS

Gﬁ; SY¢Yas Y ¥as
{25 Kor}(1.5) {25 Kg}(0.0) {25 Kp}(-2/7 ) (1/Tp)
(25)(15) (25) (2/7e)(25)

T, = 0.36 sec




TARLE A-9

CONTROLLER GATNS

FLT. COND. Ka - 1/T /T
aylaB Kq)ldB KPlaB L “ LIdB
630 N.A. 7.0 5.0 2.0 11.0
725 N.A. 7.0 5.0 2.0 11.0
810 -10 0.0 -20.0 25.0 8.0
840 -20 -10.0 -30.0 25.0 -2.0
850 -20 -10.0 -30.0 25.0 -2.0
865 -10 0 -25.0 25.0 3.0
TABLE A-10
SUMMARY OF CLOSED-LOOP DYNAMICS
cp!
N
FLT. COND. (SL) _ o= Ky
& aﬁ}-»&r ydB
(-1.62) .0060]
630 1.0 arb
T.490 ] .0035] .
.00610] |2.69
e | ]
- b
25 .51 .008L4 arb.

[.01 55] [5.89
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TABLE A-10-Concluded

SUMMARY OF CLOSED-IOOP DYNAMICS

FLT. COND 5 - Hgé e
. . 63’-8,3',—>5r A ay dB
8 {-5.06}(2-16)(50-9)[5:?8] 10

10 ' ' )
(2.75)(21.1)| "L [7:?5
{-12.65}(10.7)(27.2) L°ggl

8140 YR -20
(.0528)(.508)(9-99)(25-8)[7.uo]
(6.0 (47.5) [ %]
850 -0T1 =
(,0292)(.567)(7.12)(54.4)[6,66 ]
(-8.8}(6.09) (63.1) |, 272
e [u.m ] -10

(.0074)(.401)(5.90)(106.)[u.gg6]




TABLE A-11

SUMMARY OF CLOSED-LOOP DYNAMICS

FLT. COND.

(&

o
m—
o

-K

630

{-1.62}(25.0) L :(;(;60

(0)(2.11)(20.7) [?gg]

7.0

25

{-2.37}(25.0) 1:23‘]

(.0002)(1.82)(17.8) Eg;

7-0

810

%-5-06}<e.16)<é5.o>(5o.e)[5:§§ﬂ

<71

(.0007)(1.53)(3.65)(8.20)(27.3) [, ;-

0.0

840

{-12.65}(3.62)(25.0)(30.1) [832]

(.0087)(1.97)(9.04)(19.4)(26.7) [8723]

-10.0

850

{-14.4}(6.01)(25.0) (47.5) %ﬁ]

(.0012) (2.40) (8.114)(20.6)(53.9) [ ]

-10.0

865

{-8.80}(6.09) (25.0) (63.%) [, -1
(.ooou)(eo.e)(105-)[h:;ﬂ [62
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TABLE A-12

SUMMARY OF CLOSED-LOOP DYNAMICS

Y@YaSNg;
FLT. COND. = B 3 )
(Sa) "—»51, . ’ e
—5,
p—=3,
.0060
{-40.5 Kp}(-5.55)(2.0) |, 53 l
650 T1870.26 20
(1.98)(25.5) |, ' [5:26]
{-59.3 Kp§(-5.55)(2-0) L'géh
- ST 7
(2.02)(25-7)[1:09][6:95}
.86
{126, %, (-5.55)(2.16)(25.0)(30.2)| "¢
810 30T [ 90T [ 78] oo
(2.40)(27.3) 2_29] 6.62] [14.4]
1T K }(-5.55)(5.62)(30.1) 5 2o
810 { o } ( 159 . 26 .[3%40 w00
(19.1)(26.7) L.es][7.61][9.51
{-360.K@}(-5.55)(6.O1)(25.0)(”7-5)[5:§i]
850 2| 12 e
(5.84)(10.5)(20.4)(53.9) 2.021[6.87
2201, }(-5.55)(6.09) (63.4) |}, 1]
. {-220. K, }(-5.55)( ( )[u.u1 25.0

(20.0)(105.) 2:2?][h:%g][6:%g]




Selection of Adaptive Gains

Adaptive system gains will be Kan, which must adjust to account
for changes in combination of A, Ngy; Ng , and Ng ay with flight
condition, and KQ, which can compensate to some extent for the widely

varying control effectiveness in roll with flight condition.

The need for adaptive Ka§ is illustrated by the circumstances of
flight condition 850. A value of (-Ka§)dB = -10 is suitable for all
other flight conditions. To appreciate this need, let us compare the

conflicting requirements for (-K ") at flight conditions 810 and 850.

TABLE A-13

EFFECT OF Ka§ AT FLIGHT CONDITIONS 810 AND 850

FIT. COND. (4%y%3 g ) COMMENTS
0 16.8 10.52 DR*too stiff
-10 7.63 5.19
810 -15 2.94 1.71
DR not stiff
—20 2.16 0.943 } enough
-0 1.53
. 8. N
0 7.00 37 } %/(Lﬂ
-10 6.85 7.16 unfavorable
850 -15 6.70 6.26 (qﬁ/ad £1.0
—20 6 .66 5.34 ; '—-a& separa.-
tion adequate
—30 6.55 hoh2 to allow suffi-

cient increase
in DR damping

*¥DR = Dutch Roll
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Table A-13% shows that at flight condition 810 a gain in excess of
-20.0 @B is required for adequate dutch roll stiffness while at flight
condition 850 the gain must be -20.0 dB or less to permit a sufficient
increase in dutch roll damping when the roll SAS closure is made.
Inasmuch as these conflicting requirements are most probably a function
of operating point rather than flight time, and because of the rich

variety of possible entry flight plans, a good case can be made for an

adaptive SAS.




APPENDIX B

DEVELOPMENT OF ADAPTIVE CONTROL
FUNCTION SYSTEM EQUATIONS

Equations which describe the adaptive control function system for
the vehicle in Section IT are stated in a more general and compact
way here. The effects of forcing because of mismatch and disturbance
inputs are treated in greater detail than in Section IT. Equations
are written to show the modifications introduced by additional, outer
loop closures around the adaptive system. The criterion implied under
the assumption that the adaptive gain adjustment law is a steepest

descent law is also given.

The equations are sufficiently general to enable the adaptive
control function technique to be "applied" to many control situations

merely by meking appropriate specializations.

ADAPTTVE SYSTEM EQUATTIONS WITHOUT OUTER ILOOPS BUT WITH
DISTURBANCE INPUTS AND ADAPTIVE FEEDBACK OF SECONDARY
MOTION QUANTITIES

The controlled element is assumed to be constant coefficient and

linear. Its transfer functions are given by

cu = (C/A) fu + (D/A)du (B-1)*

m = (W/a)ru + (w/4)au (B-2)

The u's are conformable vectors with unity elements. c¢ is a diagonal

matrix of variables to be controlled, that is, of primary motion

1Both time domain and Laplace transform domain equations will be
used. Equations will be in terms of one or the other domains, but no
distinection between domains will be drawn in the notation since the
proper domain will be clear from the context.
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q_uantities.'lL f is a diagonal matrix of control surface deflections,
i.e., control functions. d is a diagonal matrix of dislurbance inputs.
m is a diagonal matrix of secondary motion quantities involved in

the problem. The matrices, ¢ and T, are of equal order.

The control law for the basis system is

fu=|r-cl- Fm]oc’_1 k. (B-3)1T
r is a diagonal matrix of commands, that is, the reference values of c.
The matrix F contains the feedback transfer functions. k is a vector
of adaptively adjusted gains. Fixed gain control paths are assumed to
be included in Eq B-1 and B-2. The basie system is illustrated in

Fig. B-1.

An error vector is defined to be proportional to the difference
between the commands, ru and calculated commands, rpu. This calculation

is performed by processing cu and mu by the mathematical inverse of a

transfer function model for the system.

Cholce of a system model is somewhat arbitrary. However, for our
work here, we choose the form of the model to be the same as the basic
system. The model controlled element transfer functions were taken
to be approximately those of the actual controlled element at one
particular operating point. The model gain vector, X, has elements
corresponding with those of k. Its elements are chosen so that system
model performance would be near "optimum" if it were excited by the

commands, ru.

The error, a vector, is defined as

tlower case letters are used for certain diagonal matrices because
this distinction from the upper case for general matrices aids inter-
pretation of the equations. For example, it follows that cu is a
vector of variables to be controlled, etc. This cumbersome
representation of vectors is necessary here in order to write all
subsequent equations compactly.

. n -1
ttSubscripts of . and OQ will be used on quantities to indicate
respectively, the direct or inverse Laplace transform of a quantity.
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e = [r -ry EOJkm (B-4)

The similarity of the model and the basic system enables us to write

the model control law

lrmio]km = fpu + [ciFmL:_1 kp (B-5)

in consideration of Eq B-3. Disturbance inputs to the model are
omitted since disturbance effects would be suppressed in an ideal

system. Then, in consideration of Eq B-1, fju can be obtained from

fmu = Ap 01;1] cu (B-6)

Equation B-4 can be rewritten using Eq B-5.

e=|r-c!- FmJ&_1 kp - fpu (B-7)

The error is mechanized in the adaptive system according to Eq B-T.
The error mechanization is illustrated in Fig. B-1. Notice that the
adaptive gains and their model counterparts are contained in matrices
in this figure. The matrices, K and Ky, are related in a time
invariant way to the gain vectors, k and kp respectively, by alternate
equations for the control function, f(,)u.

1 | 1

r-ci-Fn k =K r-cl-Fm u (B-8)
| £‘1 (+) () | £‘1

This equation holds at every instant of time so there are always an

equal number of unknowns and independent linear algebraic equations.

Therefore, a unique relation between K(,) and k(,) always exists.

Often, it is most readily obtained by inspection, however, rather than

by solving the equations.
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Tet us adjust the gains of the adaptive system according to the

following differential equation.
. 1
k = Ajlr - ¢ - Fm e (B-9)

A is a diagonal matrix of adaptive loop gains. All diagonal elements
of A are positive. Equation B-9 describes the mechanization of the

adaptive system gains.

Stability and convergence of the adaptive system is studied in

terms of the adaptive gain difference vector, Ak.
Nk & kp -k (B-10)

Equations B-3, B-7 and B-10 can be used to express the error in terms
of Ak.

e = r-c:-FmoC_]Ak-{fm-qu (B-11)

Equations B-9, B-10 and B-11 can be used to obtain gain-difference

differential equations.

. [} 1 |
Nk = eA{r -c :- Fm [r -c i- Fm
iT1
1

+ Alr -ci- le£:1 [fm - flu

e
(B-12)

Equation B-12 is a vector-matrix expression comparable to Eq 22 and
23 in Section II.

When there is no signal mismatch between the system and its model

in the sense that

f, = f (B-13)
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this implies that no disturbance inputs are acting, and no controlled

element mismatch exists. Then, the last term on the RHS of Eq B-12

is zero, and the expression is an explicit function of all the linear
algebraic dependencies on Ak. This is similar to the expression used

in Section IT to assess stability. When Eq B-13 is satisfied, Eq B-12
is stable because the coefficient matrix for Ak on the RHS of Eq B-12

is non-negative.

We are now interested in obtaining a similar description which
holds when controlled element mismatch and disturbance inputs are
present; This requires an expression for [fm - f]u in terms of
[r - c!-Fn] and 4. From Bq B-1, B-3, B-6 and B-10:

lfm - f]u - [Am ¢l c/A - I] {[r Sel- Fm]oc_1(km - Ak);

+ &y Cp' D/Adu (B-14)

Substitution of Eq B-14 into Eq B-12 assuming kp is constant gives

[r - CE-FmJ:JAk} ]_1
' ! -1 ! J: JL
S A O A R
+ A[r - i - Fmﬂé_1 {Am C; D/A du} B (B-15)

Lk = -A[r -c!l- Fm]l‘:_1 [[Am oy C/A]

The last two terms on the RHS of Eq B-15 are the forcing terms. Each
may introduce a bias and a transient foreing effect. The second term
on the RHS arises because of controlled element mismatch effects since

it vanishes when
-1
Dy Cp C/A =1 (B-16)

This forcing is actually desirable because it tends to offset the

effects of controlled element mismatch by calling for non-zero values




of Ak. The third term on the RHS of Egq B-15 arises because of the
disturbance inputs. Whether this forcing is regarded as desirable or
not is largely a point of view. Its effect is to suppress disturbance
input components in [r - rm]u, but this is often accomplished by calling
for values of Ak which sacrifice a considerable amount of the basic
system stability margin. This is especially true where the disturbance
input power is large with respect to command power. Thus its desir-
ability is somewhat controversial. It is possible to circumvent this

"problem," however, if one is willing to measure the disturbance inputs.

The stability of the homogeneous part of Eq B-15 is the last point
for discussion. In Eg B-12, the homogeneous solution is stable because

the matrix

{? -c E- Fmié_1 l? -c E- Fm] -1
is non-negative. This is a gyfficient condition for stability. If

this matrix is also non-zero except at isolated instants, the homogeneous
solution is asymptotically stable to Ak = 0. See Theorem 1 and pages

14 through 16 and pages 106 through 108 of Ref. 7 for detailed proof.
What is more, under these circumstances, Eq B-13 holds so that Ak = O
results in e = O because of Eg B-11. All these conclusions assume no
mismatch of either kind. That is, Eq B-13 must be satisfied. Things

are not so simple for the homogeneous solution to Eq B-15. This is

because H in

| 1 -1 |
= -c - -c |- -
HAk [r c! Fm]°c4 “Am Co C/A] Hr c ! m] _1&&]‘[:1 (B-17)
is not necessarily a non-negative matrix. This fact denies use of the
simple sufficiency condition for stability. A general, analytical
treatment beyond this point does not seem warranted because it would

pertain only to the homogeneous (unforced) solution.

A few qualitative remarks are in order, however. It seems evident
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in view of Egq B-16, that small mismatches will still result in a
non-negative matrix. This follows from the fact that the transfer
functions matrix of Oy 051 C/A will have elements which are pole-zero
dipoles when mismatch is small. If the power spectra of the elements

of |[r - ¢ i— Fm] -1 are at all broad, we can reasonably expect the H
matrix to remain non-negative. So, while Eq B-15 is an exact expression,
it is not useful for engineering analysis of the problem. It does,
however, provide an intuitive feel for the effects of mismatch and

disturbance inputs upon the gain-difference dynamic response.

The structure of this gain-difference dynamic system is illustrated
in Fig. B-2. It shows that the elements of the closed loop are
integrators, time-varying gains and transfer functions consisting of
dipoles. When the transfer function matrix is unity, the closed loop
is stable as noted previously. When the time-varying gains can be
effectively approximated by constants, the system stability may be

examined using root locus techniques.
INCLUSICN OF OUTER LOOP CLOSURES

Outer loop closures may be represented by redefining r as
r = P(rg - c) (B-18) 1

r, is the diagonal matrix of outer loop commands. P is the matrix of
outer loop compensation. This expression can be substituted in all
equations for r. The results of the substitution into Eq B-15 are of
particular interest because that equation determines the gain-difference

dynamics.

tThe matrix, ¢, could be replaced by a linear operation on the

controlled element output matrix for greater generality, but this would
not affect the observations which follow.
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Ak = -A[Pro -(1+P)ec i— qu,_1 “Amcl;l]c/A] “Pro- (1+P)c E-—FmL_1Ak£t] »

+ A[Prg - (1 +P)ci- leii'1 “%CI;]C/A-I] [Pro - (1 +P)c!-Fm]km] »

+ A[Pro -(1 +P)ci - qu_1 iAmc;D/A du (B-19)

-
When the assumption is made that Eq B-16 is satisfied (no controlled
element mismatch) the following results.

Aia=-A|Pro-(1+P)c‘-m]°'t_1[1°ro-(1 + Pl - Fuf _, Ak

i 1 i:

(B-20)

D/A du} B

+ alprg - (1 + P)e] - Fm]o‘:"_1 :Amc;l
Equations B-19 and B-20 indicate that the outer loop closure effects
are merely changes in the (time-varying) coefficients in the equations
governing the parameter-difference dynamics. While these affect the
level of the forcing resulting from disturbance inputs and controlled
element mismatch, and the rate of convergence of the homogeneous solution,

it does not seem likely that stability will be affected.

IMPLTED CRITERION

The gain adjustment law, Eq B-9, was selected because of the
stability property that Ak displays when fp = £. 1In other words,
Eq B-9 was established for reasons of convenience. Now,it would be
interesting to discover what criterion is being satisfied by Eq B-9,

assuming it is a steepest descent law and that Eq B-13 is satisfied.

Steepest descent adjustment means that:

h = -(constant) 4, J (B-21)

h is a gain vector, V,(+) denotes the gradient of (+) with respect to

h, and J is the scalar criterion. We can arbitrarily take the constant




to be unity without loss of generality. The development on pages 21
through 23 of Ref. 7 shows that Eq B-21 is equivalent to

e
I

AV J (B-22)

when Al/2n (B-23)

e
|

Recall that A is diagonal so that
R v
In consideration of Eq B~10 and B-11, it is easy to see that
J = e'ef2 (B-24)
and that the gain adjustment law results in a steepest descent

adjustment on the surface described by Eq B-24k in h coordinates. That
is, when e(Ak) is expressed as e(A1/2Ah).
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APPENDIX C

SIMULATION CIRCULTS

The primary goal of this research program was to develop a control
system capable of rapidly adapting to compensate for plant variations.
What proved to be a particularly appropriate application was selected
to demonstrate the principles of the adaptive system. The problem
chosen was the lateral-directional stability augmentation of a
representative, but hypothetical, manned, lifting-body, entry vehicle.
A quantitative description of the dynamics of the vehicle is given in
Appendix A. Certain aspects of the particular control problems posed

by this vehicle have already been discussed in Section II.

Analog computation was chosen as the appropriate tool for system *
simulation. The EAI 680 computer system provided the complete real-time
simulation. Preliminary studies were performed on the EAT TR-48, .
a considerably smaller computer system. This, it turned out, was
highly advantageous in that the low cost TR-48 served well to show how
to optimize the full scale simulation. The EAT 8400 digital computer
provided some support, particularly in setting up function generators.

All simulation work was accomplished at Electronic Associates, Inc.

Princeton Computation Center, Princeton, New Jersey.
The details of the simulation follow.

The block diagram of the complete system is repeated here in
Fig. C-1. References are made in Fig. C-1 to the appropriate detailed

diagrams which comprise Fig. C-2 through C-12 of this Appendix.
THE VEHICIE

Pertinent trajectory (trim) characteristics are given in Fig. C-2.
The sketch and definition list below identify the axis system and trim

motion quantities.
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Flight Conditions

850
630 725 810 840] 865
T T | S B B
0000}
vy, (fps)
Velocity
5,000
\\\
i 1 i B 1
500 600 700 | yisec)— 890 900
50 —
40 Angle of Attack
a, (deg) /
w —
0 /
\
10 N
1 i 1 1
500 600 T00 t{sec)—— 800 900
Lo -
fon 8, Trim Pitch Angle
st \/
. 1 [ ] L
; 500 600 700 + (voc)— \ 900
\_
Figure C-2. Trajectory Characteristics

118




xyz is a body-fixed Ciao x Axis
axis system

Trim Conditions

X Axis ¥, =¥, =0

@o = @o =0
. ; Yo » flight path angle = 8, + a 8o =0
N7 z Axis 0> o o
0 6, , angle of inclination of x axis
. from horizontal
Gravity

ap, trim angle of attack
Vq,, velocity (inertial)

The segment of flight time selected encompasses the crucial
conditions from the handling qualities viewpoint. In addition, the
ranges through which the stability derivatives vary is extreme. The
time varying stability derivatives are shown in Fig. C-3, C-4 and C-5.
Stability derivatives not shown (Lﬁ, Ly, Np, Ny and others) are
negligible for this vehicle and flight regime and are assumed zero.
The time functions shown are the actual simulated functions. They
were generated using diode function generators and some of the digital

logic ("AND" gates) available in the 680 computer system.

The three vehicle equations of motion are shown in Fig. C-6, C-7
and C-8. The time varying stability derivative are generated by
variable diode function generators (VDFG). Resolvers are used to
produce the sine and cosine of angle of attack in the side force

equation. Quarter square electronic multipliers are employed as shown.

The sensor equations are represented in Fig. C-9. ¢ is the bank
angle of the vehicle and ay is the lateral acceleration of a point on
the vehicle 1y feet forward of the center of gravity. This distance

is set into the accelerometer equation with a potentiometer and may be
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Figure C-3. Side-Slip Derivatives
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Aileron Derivatives
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Flight Conditions
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varied over a wide range. For the experiments reported in Section III

of this report 1y was 3.30 ft, the "optimum" value determined by the

fixed flight time surveys.

Figure C-10 shows the lateral acceleration feedback loop of the
stability augmentation system. a§ is equalized by a lead-lag circuit
and feeds back to the acceleration command point. The command error,
8c, ~ 8¢, then goes through the gain Ky, and is the rudder servo
command. Both the rudder and the aileron servos are represented by first

order lags with break frequencies of 25 rad/sec.

The gain Ky is established by the adaptive loop. The command error
ace ~ 8¢ is processed by a filter and a model of the servo (exact)
to provide one component of the error signal e,. The other component
of ey is the model output 8;;. A multiplier weights the error to
provide the rate of change of Ky. An integrator with initial condition

Kyo generates Ky for the augmenter loop.

Figure C-11 shows the roll rate feedback loop of the stability
augmentation system. It is different from the lateral acceleration
loop in only two ways. First, there is no equalization of the sensor
output, the feedback signal. Secondly, the alternative scheme used
to simulate the digital gain adjustment logic is showm. Section IV
covers the apalytical and experimental results obtained with this

scheme.

Figure C-12 gives the diagram for the model of the inverse vehicle.
The inputs are roll rate, $, and filtered lateral acceleration, Taq
T is the filter time constant, and happens to appear as a scale factor
on the signal a;. Roll rate is processed by a filter with the same
time constant, t. The filter serves the dual purpose of pseudo-
differentiation of roll rate and suppression of high frequency noise
originating at the sensors. The outputs of the model are the desired

rudder deflection, 8§m, and the desired aileron deflection, SZm-
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Figure C-13 gives the details of the circuit used to generate the
forcing functions for the system. Three oscillators, each of which is
built from an integrator and a relay, are the important elements in
the system. One oscillator, Osc.No. 1, supplies the square wave
signal, and the three together are used to generate triangular waves
which are summed and filtered to produce the approximately Gaussian,
quasi-random, driving funection. This quasi-random function "looks"
random but it can be reproduced exactly at will. Naturally the
spectrum can be adjusted to meet any requirement; the only limitation
being that only three major frequency components are available, one
for each oscillator. There are, of course, secondary frequency
components (harmonics) present, and these are desirable in that they

help mask the periodic nature of the signal.

Figures C-14 and C-15 show auxiliary circuits which are required
to operate the simulation. Figure C-14 shows the various piecewise
linear time ramps used to drive the diode function generators which
provide the time varying stability derivatives. (See Fig. C-2 through
C-5.) An integrator supplies a ramp function which is modified in
several ways to supply signals with varying slopes. In this way
maximum slopes of the VDFG's are artifically increased to suit the

rapidly changing stability derivatives.

Figure C-15 shows the digital mode control logic required to
secure valuable operational efficiency. Certain simplifications of
these logic circuits are no doubt possible since they were partly
implemented in the "heat of battle." The system shown, however, does

work properly.

This concludes the presentation of the analog computer circuits.
Overall, the simulation went very well—no unusual problems arose.
In fact some of the anticipated difficulties (multiplier noise, VDFG
drift, ete.) did not arise. We feel compelled to note that the EAT

680 computer system's performance exceeded our expectations.
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